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Abstract—This paper presents a theoretical model for the prediction of the variation in heat removal during the dry sliding of
metallic surfaces with the inclusion of variable thermal properties. It is shown that the temperature-induced change in the so-called
‘coefficient of heat penetration’ is influential in the nature of heat dissipation at the interface. This change, termed the ‘matching
function’. is utilised to propose a possible criterion for the choice of ‘thermally compatible’ materials for rubbing applications.
For the optimisation of thermal conditions, this criterion requires the selection of the rubbing pair, so as to maintain, in order of
preference, a positive, zero, or slightly negative matching function. A preliminary study of mild steel rubbing against the same
material, and against stainless steel, is presented to illustrate the relative effects of both conductivity and the matching function.
it is shown that the latter provides an indication of the nature of heat removal during contact. It is proposed that this criterion
may be extended to the choice of thermally efficient tribological coatings to enhance the transfer of frictional heat away from the
interface. This is directly related to the design of frictional tribo-systems such as brakes and bearings. © Elsevier, Paris

thermal compatibility / matching function / flash temperature / heat penetration / penetration depth / contact efficiency

Résumé — Compatibilité thermique de surfaces métalliques utilisées en situation de frottement. Dans cette étude, un
modale théorique, incorporant des propriétés thermiques variables, prédisant les variations de transport de chaleur provoguées
par le frottement i sec de surfaces métalliques, est présenté. On y démontre que la variation du «coefficient de pénétration de
chaieur» provoqué par le changement de température, dépend de la nature de la dissipation de la chaleur a linterface. Cette
variation, définie comme «fenctien de compatibilité», est utilisée pour définir un critére possible pour le choix de matériaux
«thermigquement compatibles» pour des applications impliquant du frottement. Afin d'optimiser les conditions thermiques, la
sélection de la paire des matériaux en frottement doit se faire de maniére a maintenir la fonction de compatibilitd, par ordre
de préférence, positive, nulle ou légérement négative. Une é&tude préliminaire avec de 'acier doux frottant contre un matériau
similaire et de I'acier inoxydable est présentée de maniére a illustrer les effets relatifs a la conductivité ainsi gu’a la fonction de
compatibilité. 1 est démontré que cette derniére fournit des indications quant a la nature de la dissipation de chaleur durant le
frottement. Il est suggéré que ce critére pourrait étre utilisé pour le choix d’'un recouvrement de surface qui soit efficace pour
éloigner de I'interface la chaleur créée par frottement. Cela s’'applique pour la construction de systémes & friction tels que les
freins ou les roulements. © Elsevier, Paris

compatibilité thermique / fonction de compatibilité / saut de température / pénétration thermique / profondeur de pénétration /
efficacité de contact

Nomenclature zen Tate of total heat generation at the
o1
Ay area of conduction................., m? surfa,ce s .
Ay real area of contact between the sliding Usig  sliding speed ... m-s
solids ......... .. . ...l m? Zy diffusion length ... _................ m
B initial coefficient of heat penetration.  W-m™2.571 Zpax depth from the surface at which a
Fod average contact pressure . ........... N-m~—2 temperature rise 1 % of that at the
Qs rate of total heat dissipation away from surface is felt .. ....... ... ... ... m
the Sll'l'fa.(‘.ﬂ. T T J'S_l erfc con]p]en]ent,ary error function

erfe(z) = 1 — erf(x)
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ko reference thermal conductivity. ... ... Wom LK1
a3 ratc of instantaneous heat dissipation

by an individual pair of contacting

asperities .. ... Js7!
Ta radius of the contact spot between two

contacting asperities. ............... m
te duration of a single contact cycle . ... 5
4 instant of time within the contact cycle ]

Greek symbols

r individual material matching function

Tog  effective matching function for the
rubbing pair

4, bulk temperature rise between two

ASPErities . ... ... cuviin i °C
@pax maximum potential temperature rise

at the end of the contact eycle .. .. .. °C
Gy temperature rise at a depth Z from

the surface. .......... ..o L. e
@ slope of the heat dissipation with

LCIMPCTALUTE « '\ vt vveee e vneinrnnn s W-m—2.0C-1
a thermal diffusivity of the material . .. m2.s~1
Jo temperature coefficient of the thermal

conductivity ... viiii i K-t
o cfficiency of an asperity pair to dissi-

pate heat
H nominal coctlicient of friction

1. INTRODUCTION

Between two sliding solids in contact, there will be
a number of pairs of micro-asperity contacts, the total
area of which represents the true area of contact, When
an individual asperity pair starts to slide, a quantum of
heat. causing a surface temperature rise, is generated.
As a result, a temperature gradient normal to the
contact spot will develop. Concurrently, the thermal
conductivity of both materials will undergo some change
(either an increase or decrease) due to the temperature
rise. Continuous sliding will lead to the development
of a so-called mechanically affected layer in which a
strong temperature gradient takes place [1]. This layer
will entrain a temperature distribution which induces
a corresponding point-wise variation in the thermal
conductivity. This leads to variation in the heat removal
with respect to position from one sub-layer to another.
In this way, the variation in the thermal properties
of the rubbing pair assumes an important role in the
dissipation of frictional heat.

Now suppose that the contact spot betwecn any
two asperities lies within a mathcmatically flat plane
at the surface Z =0 (where the axis Z points in the
direction of the outward normal to the contact spot).
Heat will be conducted into both solids where there
exists solid-to-solid contact. That is, essentially, heat
flow is initiated at this mathematical plane, i.e. at the
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tips of the micro-asperities. The role of the contact
spot in the flow of friction heat may be viewed as
analogous to the role of a valve or a gateway in fluid
flow, in the sense that heat flows (penetrates) through
the contact spot towards the bulk of the micro asperities
(and eventually to the bulk of the rubbing solids). To
utilise the thermal storage capacity of the rubbing
solids, this contact spot has to maintain maximum
thermal efficiency. So, at all time increments within the
contact cycle, a maximum possible rate of heat flow has
to be maintained. This heat flow rate, transferred by
conduction according to the model used in this work, is
governed explicitly by the product of the conductivity
and the temperature gradient at the surface Z = 0, as
may be inferred from Fourier's law. In this way, the
variation in the conductivity with temperature assumes
an important role in maintaining the thermal efficiency
of the contact spot (or the gateway in the fluid analogy).
It is recognised that the thermal cffusivity of the rubbing
matcrials and its respective variation with temperature
may affect heat conduction away from the contact spot.
However, for the materials used in this investigation
and the temperatures encountered for practical sliding
systems, the variation in the effusivity with temperature
is considered immaterial (see appendix).

Variation in the thermal conductivity may be classi-
fied into three broad categories according to the change
in the conductivity with temperaturc; these are sum-
marised in teble I Based on this classification we may
conceive the following scenario. A cluss o material is
rubbing against another class a material under slid-
ing conditions that result in a high tcmperature rise.
When the materials start to heat at the points of
true contact, the conductivity will drop significantly.
Meanwhile, heat continues to be generated at the in-
terface due to continuous rubbing. As the temperatures
increase, the ability of the centact spot, on both sur-
faces, to maintain the optimum rate of heat flow will
decrease. Now if the rate of heat generation at the
interface is greater than the rate of heat pcnctration
through the micro-roughness, heat will accumulate at
the interface. This heat will further raise the interfacial

TABLE |
Classification of materials according to the variation
in their thermal conductivity with temperature.

Marerial
class

Conductivity behaviowr with temperature

Class a [Conductivity drops with temperature elevation
(e.g., carbon steels, sapphire, and zirconium)
Class & |Conductivity increases with temperature elevation
{(e.g., stainless steels, duralumin, and cast iron)
Class ¢ |The temperature—conductivity curve ineludes

an inflation point; that is, the conductivity

of the material increases (or drops) with
temperature, reaches a maximum (or a minimum},
then drops (or increases);

(e.g., titanium, zinc and vanadium)
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temperature causing a further drop in the conductivity
and rendering the heat removal less efficient. If such a
situation prevails for a sufficiently long time, thermal
failure of the rubbing pair becomes imminent. For this
reason, it is important to address the fundamental
question of how to quantify and control the difference
between the generated and the dissipated heat, where
we understand dissipated heat to mean the heat which
penetrates through the contact spot inte both rubbing
members. Perhaps more importantly, how should the
designer, who is frequently faced with a situation where
pre-set operation parameters are imposed, choose the
materials of rubbing members so as to eliminate this
differcnce or confine it to an absolute minimum 7

In this paper the fundamental semi-infinite body
solution [2] is used to identify a -characteristic
temperature-penetration depth which defines the extent
of the temperature effects in the bulk of the material.
By expressing heat dissipation in terms of the penetra-
tion depth, two fundamental quantities are identified.
The first is termed specific contact efficiency, which
represents an upper bound for the capability of a single
contacting asperity pair to dissipate an applied thermal
load. The second, termed the matching function, rep-
resents the change in the so-called coefficient of heai
penetration [3] (or thermal cffusivity). This relates the
change of the thermal conductivity with temperature
to the diffusivity of the material and may be used to
predict the nature of heat removal with temperature rise
and thereby the thermal compatibility of two materials.
A criterion for the thermal compatibility of two rubbing
materials, based on the value of the matching function,
is proposed. The criterion requires the selection of the
rubbing pair, so as to maintain, in order of preference,
a positive, zero, or slightly negative matching function.
The matching process is demonstrated by studying the
heat removal for two rubbing pairs {mild steel (ALSf
1020)-mild steel, and mild steel-stainless steel (AIST
304 HN)). It is to be noted, however, that the scope of
this work does not extend to the treatment of the man-
ner in which friction-induced heat is divided between
the rubbing members.

2. THERMAL ANALYSIS

Two conforming rough solids will establish true con-
tact between a finite number of pairs of contacting
asperities. The asperity pair may be sufficiently mod-
elled as a pair of spherically capped protrusions which, if
plotted on a one-to-one scale, would resemble two semi-
infinitc bodies with a circular contact spot between
them [4]. The model of heat transfer adopted in the
current work follows that of Dundurs and Panek [5], in
which the following assumptions are made: heat trans-
fers only where there is metal-to-mctal contact (i.e. at
the contacting asperitics only); the effects of radiation

and the effects of an intervening fluid are insignificant;
and there is no resistance due to an oxide film or other
contamination of the surfaces.

Counsider a system of two contacting asperities sliding
relative to each other (figure 1). Choose a point located
at the centre of the moving contact spoet (point g in
figure 1). The point will slide towards the leading edge
of the mating asperity, point A, at time t = 0% (say).
The point will continue to slide across the contact spot
until it reaches a point, B, located at the trailing edge
of the spot, at time ¢ = ¢.. It thus concludes a single
rub (or a single contact cycle) in which a distance, AB,
equal to the diameter of the contact spot, is covered in
a time t.. When the point moves with a uniform speed
Usiia, the duration of a single contact cycle is defined as:

27,
t. = 1
Ustia (1)

To trace the thermal history of point g, it is
nccessary to divide the time of contact inmto j equal
time increments, so that the temperature of point g at
any moment within the contact cycle is a function of
the temperature rise at previous times:

Ogt) = Z 6. (ti) {t=1,234,....7) (2)

temp

AB=12T,

Figure 1. Schematic showing key variables of the model of
contact used in the present work. Point g, located at the
centre of the moving contact, slides with a uniform velocity,
Uqia. The point approaches the leading edge of the stationary
asperity, point A, then continues to slide until it reaches
the trailing edge, point B. The duration of motion is Z., in
which point g covers a distance AB egual to the diameter of
the contact spot. Concurrently, the temperature of the point
B¢ (ti) increases as a function of time.
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Note that, according to equation (2), the maximum
temperature rise of the point will be reached at it
where the contact spot has covered a distance equal to
its diamcter. At each time increment, a temperature
gradient will form in each of the rubbing asperities,
rising towards the contact spot, and causing heat to
flow towards the bulk of the materials. Due to the
temperature rise, however, the thermal conductivity of
both materials will vary and hence the product of the
conductivity and the temperature gradient will change
accordingly. Applying Fourier’s law of conduction, and
assuming that the conductivity of both mating materials
varies linearly with temperature, the heat conducted
away from the contact spot assumes the form (sec
appendix 1}):

o = aalt) = [0y (1 + <9g){6"{z;]:@“}1

- )
+k02(1+ﬁ29g){'9iz“;@£} ] A (3)
2

Equation (3) may be extended to represent the
amount of heat dissipated by n contacting asperity
pairs, by summing the individual contributions of all
the contacting asperity pairs. Whence it follows that
the total heat dissipated through the surface per unit
time is:

Qaiss (1) = Qaiss = 7 galt:) (4)

However. the total heat generated at the contact
interface between the two solids is:

Qren(ti) = Qgen = p P Ustia A (5)

where P is conventionally considered as the hardness
of the softest of the contacting pair for plastic contact
conditions or the Hertzian contact stress for elastic
contact conditions [6], and p is the nominal coefficient
of friction. Note that equation (3) may be interpreted
as an upper bound to the capability of a contacting
asperity pair to dissipate a thermal load (given by
equation (5)) applied at the interface.

3. HEAT DISSIPATION EFFICIENCY

The maximum thermal load that can be handled in a
given sliding situation is proportional to the maximum
heat dissipation capacity of a contacting asperity pair.
Thus, the ratio of the maximum load to the actual
total thermal load applied at the interface may be read
as constituting a measure of a specific heat dissipation
efficiency (na) of the asperity pair defined as:

ga

= —_ O TMa, 1 6
O (0 <7 < 1) (6)

Mo
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The non-dimensional parameter 7, may also be
viewed as the thermal loading limit of an asperity
pair, and thus indicates the portion of the interfacial
thermal load shared by an asperity pair during rubbing.
The higher this parameter, the higher the ability of the
solid to withstand friction induced thermal loads.

The influence of the asperities is not explicitly
apparent in the model due to the definition of thermal
efficiency used to develop equation (6). This efficiency is
taken to indicate the ratio of the rate of heat penetration
through the contact spot-between two micro asperities
q(t:) to the rate of toial heat generation at the interface
Q% (equation (5)). On balance, the influence of the
number of contacts on heat sharing may be explicitly
deduced if the contact efficiency is, alternatively, defined
as the ratio of the rate of heat penetration through
the contact spot g(¢) to the rate of heat generation
at the asperity tip, i.c. Q. n™™, where the factor
m assumes the values of 1/2 or 1/4, depending on
the spacing between the micro-contacts [7]. In any
case, incorporating the effect of the number of micro-
contacts would not affect the fundamental trends of
heal penetration.

4, THE PENETRATION DEPTH
OF A TEMPERATURE PULSE

Consider the semi-infinite plane shown in figure 2.
The material and its surface are at some given initial
temperature, @p. At the time ¢+ 0 the surface is set
to a temperature .(t), where t<i.. Now, define a
normalised temperature € that represents the ratio
of the temperature rise at a depth Z, to the surface
temperature, so that:

RIS TG S
wrdresit

Figure 2. Schematic illustrating the development of a strong
temperature gradient in the mechanically affected layer. The
maximum penetration depth Z, _  is that depth at which a
temperature rise amounting to 1 % of that at the surface is
felt.
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The temperature field in the material is given by:

06 2’6
9 =%z (8)

with the boundary conditions:

o @

=0 t<0, 0<z<00
=1 t>0, z=0

The solution to this problem is [1, 2J:

6= % [O exp {—£} d¢ = erfe(¢) (10)

where:
A

= 2val

(11)

The solution, equation {10), may be regarded as
the response of the material to a surface temperature
pulse, where the maximum response corresponds to
© =1, while no response corresponds to & =0, Le.,
0 < &, < 1. The equation

_ 2 o 2

O, = —= exp { —£° } d€ = erfc(€ 12)
=7 {—¢} &)
has the solution (&), unique to a particular 6, such
that:

Zy =26Vt (13)

which is defined as the penctration depth of @,. Tt
follows that a unit temperature pulse on the surface
causes a temperature rise of at least @ to penetrate to
a depth Z,. As an example, 8, = 0.7 (a rise of at lcast
70 percent of the original pulse) is felt at a depth of:

Zo7=0.275 X 2vVat (14)

(using erfc(0.275) = 0.7).

In this work, the maximum penetration depth will be
considered as the depth at which a temperature rise of
about 1 percent of that at the surface temperature rise
is located, i.e. Zg.01. Using erfc(2) = 0.01, this depth is
given by:

meax = Z(]_(u o~ 4V(Jtt (15)

The penetration depth given by equation (15) repre-
sents a higher bound. This is because the temperature
pulse applied to the surface of the asperity flows orig-
inally in a one- dimensional manner along the Z axis
until it reaches the bulk of the material, where it can
travel in two or three dimensions.

5. VARIATION OF HEAT DISSIPATION
WITH SURFACE TEMPERATURE RISE

o

Substituting equation {15) in equation (3), ¢° may
be expressed as:

. , O — O
o= ko (1+ 41 0 {E__
4. [01( + 61 g) 4V/CT1-E L

Qg - 9!)

+k02(1+ﬂ2 Bg){ 4\/072"5

He oo

Differentiating equation (16) with respect to the
maximum temperature rise at the surface, the variation
6, in ¢° per degree surface temperature rise, assumes
the form:

9. /Aa = ko, [(2es ~ Bh,)d + 1]

30, et
(20, —Gu)fz +1] _ 1
+k02[ L }—4\/5@ (17)

The parameter ¢, which has the units of W-m=2.K !,
incorporates the changes in the flux permitted through
the asperity contact per unit area per unit surface
temperature rise, or the change in the so-called
coefficient of heat penetration per unit temperaturc
rise. To investigate the influence of this parameter on
sliding, let us assume for convenience that the surface
temperature rise is considerably higher than the bulk
temperature rise, i.e. 6 3 6G,. This assumption is
equivalent to stating that the penetration depth of a
temperature pulse extends to the location on the Z axis
where no temperature rise is experienced. Under these
conditions the variable ¢ becomes:

_ ko, 51 | ko, B2 ko, ko,
*”‘295[@*\/5;]+[\/aﬂ/a;] (182)
w=T1(0:}+ In(B:) + B= I':x(6:) + B (1856)

The parameter y represents the slope of the heat
dissipation with temperature. The sign of this quantity
is an indicator of the change in heat removal with
temperature rise. It will be noticed from equation (18h)
that ¢ is composed of two competing quantities, both
of which are material propertics. The first, B, is a
positive constant, whereas, the second, Iy, is a linear
function of the surface temperature rise representing the
temperature rise-induced perturbation in the coefficient
of heat penetration. This is closcly related to the change
in the rate of heat conducted through a contacting
asperity pair.

Dcpending on the material class (as introduced in
tahle I), I.g may assume a positive or a negative sign.
While the positive sign is desirable, a negative I'.g is
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not favoured as it indicates a drop in the amount of
heat conducted as the surface temperature increases.
This situation takes place when a negative Ieg is
greater than B so that it dominates the heat conduction
process. In this case, ¢ will acquire a negative sign also.
The ratio I'ug/B for several materials sliding against
mild steel (AIST 1020), evaluated as a function of the
surface temperature rise, is plotted in figure 3. Note
that the effect of I'.gx is more pronounced for class a
materials (negative 3 coefficients), especially at higher
temperatures, so the sign of ¢ will be determined mainly
by the sign of I'ng. The function Ieg may be used to
characterise the thermal compatibility of two contacting
materials.

0.2

Og

0.2

0.4

.................

L6

08 | ‘_Q_miid:uel-nuhw
—a— Seppux

—g— scinden sl

L A R Y EEE

i Tramum

1 —— i

P I i
1 10 0o 1,000

maximum temperature tise ©, ("C)

Figure 3. The variation in the ratio of the effective matching
function [.g to the room temperature coefficient of heat
penetration, B, with temperature rise. All materials are sliding

against mild steel (AISI 1020). Load =20 N, Uq = 2 ms™ L,

The sign of the function I'(6,) determines the nature
of heat removal away from the surface in a given coutact
cycle. If this function is positive, the amount of heat
conducted away frem the contact spot will increase with
temperature elevation, thus inhibiting the conditions for
thermal damage. In contrast, if this function is negative,
it indicates that the amount of heat conducted away
from the contact spot will decrcase with temperature
elevation, thereby catalysing the conditions of interfacial
thermal damage. In this way, the function Ieg may be
used to characterise the thermal compatibility of two
rubbing materials. In this paper, this function will be
termed henceforth the matching function. The criterion
for thermal compatibility would thus be defined as
follows: given a material for a rubbing application, what
is the mating material that would insure, if possible, a
positive matching function. Clearly this is not always
possible, because other design constraints have to be
considered too. So the next desirable condition would
be to keep the matching function at zero {implying
a constant heat dissipation rate for the duration of
the contact cycle); or to achieve the minimum possible
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negative value of the matching functions (implying the
minimal rate of change of heat dissipation per contact
cycle).

The main influence in equation (18-b) is the constant
quantity I'=koBa /2 The sign of this quantity
follows the sign of the temperature coefficient of
conductivity 4. This in turn depends on the material
class [B]. For class a materials, the g coefficient is
negative; for cluss b materials, this coefficient is positive.
For class ¢ materials, however, the sign of the £
coefficient alternates as a function of the inflation
termperature. Sa that the conductivity variation of such
materials may be best modelled by two 8 coeflicients,
as explained elsewhere [9].

For a given sliding pair, the ratio In/I% assumes
considerable importance when ¢ is negative as it
indicates which of the mating matcrials is more likely to
dominate the heat removal process by bearing a higher
portion of the friction-induced thermal load. This ratio
is given in fable I for the materials of figure 3 under
the same sliding conditions. All materials are sliding
apgainst mild steel. Notice that a positive I' /T in tabie T
indicates the sliding of two class a materials (i.e. two
negative g cocflicients). It may be noticed that class b
materials are less dominated by mild steel (compare the
values of titanium and tool steel to those of Inconel and
stainless steel for example).

TABLE i

Ratio of the individual matching functions Iy /I
for several materials sliding against mild steel (AIS! 1020).
Material class L/
Titanium ac 6,2764
Tool steel (ALST 52100) a-a 2.098
Stainless steel (AISI 304 HN) a-b —-1.31
Zine a-c 0.5794
Inconel ab —0.7378
Mild steel {AISI 1020) a-a 1

6. RESULTS AND DISCUSSION

6.1. Kinetics of the temperature
gradient

Figures 4 and 5 illustrate the evolution of the tem-
perature pradient for a stainless steel-mild steel rub-
bing pair. The pair is sliding at a speed of 2ms™%,
under a nominal load of 20 N, leading to a contact
radius of about 20 pm. Notice that there are several
factors which act simultaneously to affect the evo-
lution of the temperature gradient. Figure 4 depicts
the ratio of the instantaneous temperature rise to the
maximum potential temperature rise at the centre of
the contact spot plotted against the time of contact.
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Figure 4. Variation in the instantaneous to the maximum ex-
pected temperature rise, with respect to the non-dimensional
time of contact t/t.. Temperatures were evaluated using
a variable conductivity solution [7]. Mild steel (AISI 1020)
rubbing against stainless steel (AIS/ 304 HN). Lead = 30 N,
Uiliga = 2 msTt

i 14
i
a; 2
¢
;g 10
P
H
;{ 6
b
=)
k-1
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time within contact cvcle 1,

Figure 5. Variation in the penetration depth Zpmax with the
non-dimensional contact time ¢/¢., for the rubbing pair of
figure 4.

Notice that the rate of temperature increase (slope of
the curve) decreases with time. So the contact centre
experiences approximately one half of the maxiraum
potential rise approximately in the first 15 to 20 %
of the duration of contact. This temperature rise,
however, is not associated with a matching growth
in the penetration depth shown in figure 5: for the same
duration of rubbing, the temperature peneirates only to
an approximate one third of the maximum potential
penetration depth. This results in the temperature
gradient reaching a maximum early in the rubbing
cycle. Consequently, the capacity of the asperity pair
to dissipate heat would also reach a maximum. So the

malching funetion @ { W I’ Ty

efficiency 7. is expected to peak early in the cycle.
Subsequent to this maximum, the rate of temperature
rise is lower than that at the beginning of the cycle.
Heat pulses however penetrate to a greater depth.
That is, the value Z,_,, increases faster than the
temperature increases (figure 5). So the temperature
gradient (temperature difference/penetration depth)
will drop accordingly. In other words, as the temperature
gradient drops, the potential that drives the flow of
heat will be minimised, so that unless this drop is
compensated by an increase in the conductivity, the
amount of heat removed away from the surface will
reduce accordingly.

6.2. Effect of temperature rise
on the matching function

The values of the matching function g for differ-
ent materials rubbing against mild steel AIST 1020 are
summarised in table II. It will be noticed that class b
materials (stainless steel, and Inconel) provide a better
thermal match than class a materials. This is due to
the fact that the former have a positive I" which delays
the sharp drop in the rate of heat dissipation from the
surface with tempcerature rise often displayed by class a
materials. Note that as the value of the 3 coeficient
increases the value of the matching function increases
accordingly. So a material such as Inconel which has a
3 coeflicient of around 0.002 yields the highest positive
I" value, whereas for a mild steel pair (3 = —0.000874)
the lowest value of I' is obtained (=~ —8). This implies
that thermal failure is more likely to oecur, due to
the drastic reduction in the capacity of heat removal
expected at higher temperatures. This effect is best il-
lustrated in figure 6, which depicts the variation in the
matching function with temperature. Notice the drop
in the matching function (which implies a corresponding

100,000

[ 100 o

maximum tem perature nss B, (°C)

Figure 6. Variation in the matching function ¢ with tempera-
ture for several materials sliding against mild steel (A/S/ 1020).
Load = 20 N, Uslid =2 m-s_l.
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drop in the capacity for heat removal) displayed by
class a materials (sapphire and tool steel). The capacity
of heat removal is closcly related to the @ coefficient
and the I' values given in table I (compare the 3 values
to the corresponding curves). Moreover, notice that a
systemn composed of a class b material rubbing against a
class a material (such as mild steel and stainless steel) is
thermally stable in the sense that the matching function
is almost uniform, which implies that the capacity of
heat removal remains almost constant with temperature
elevation {compare the curves for Inconel and stainless
steel to the curves for mild steel and sapphire).

6.3. Effect of the matching function
on heat removal

To illustrate the influence of the matching function on
the heat removed away from the surface, two materials
were chosen: mild steel (ALST 1020) and stainless steel
(AISI 304-HN). The characteristics of heat dissipation
of each material are plotted in figure 7. Both materials
were assumed to slide at 2 m-s~" under a nominal load
of 20 N under plastic contact conditions. The figure
depicts the variation in the quantity of heat dissipated
versus the ratio @/@nax. The quantity of heat dissipated
was evaluated under the convenient assurnption that all
the heat generated at the interface is dissipated through
a single asperity (not partitioned between the asperity
pair). The radius of the asperity was calculated following
the method of Lim and Ashby [10], and was found
to be approximately 12 ym. Temperature gradients
were evaluated at consecutive time increments, and
then related to the instantaneous temperatures (and
thereby to the ratio @/6 .. ). Two solutions are plotted
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Figure 7. Variation in the rate of heat dissipation for mild
steel (AISI 1020), and stainless steel (AISI 304 HN), with
the non-dimensional temperature @/8.,.,. The rate of heat
conduction is calculated by means of constant and variable
conductivity solutions utilising the room and the temperature
dependent thermal conductivities respectively.

34

in figure 7. the constant conductivity solution, which
represents the amount of heat dissipated, calculated
by evaluating the -product of the temperature gradient
and the room tempcrature thermal conductivity; and
the variable conductivity solution, which represents the
amount of heat dissipated, evaluated by means of a
temperature-dependent conductivity.

It will be noticed that, individually, each material
behaves as expected for its material class: the heat
transfer rate predicted by the constant conductivity
solution for mild steel (cluss a material, negative
coefficient) drops with temperature due to the effect
of the negative matching function. Notice that the
heat transfer rate drops further if the cffects of the
temperature on the thermal conductivity are accounted
for. The ™ 77070 77 for stainless steel (class b
material, O}?LPD??II\‘,JS 15 %SE?Scient). Therefore, it( scems
logical to expect that if mild stecl were matched against
stainless steel, the drop in the dissipation ability of mild
steel would be compensated by the increase in the heat
removal capacity of stainless steel.

Figure 8 depicts the variation in the rate of heat
dissipation for two rubbing pairs. The first is a mild
steel pair; the second is a mild steel-stainless stecl pair.
Conditions of sliding are the same as those of figure 7.
The amount of heat shown in the figure is scaled with
respect to the maximum heat removed by the mild
steel pair. Note that for the same applied thermal load,
the mild steel pair dissipates more heat than the mild
steel-stainless steel pair. This is due to the value of
the conductivity of mild steel, which is higher than
that of stainless steel. The drop in the amount of heat
conducted with time is due to the negative value of the
effective matching function .y for each of the rubbing
pairs (see tabie ITT). Note that as the room tempera-
ture conductivity of mild steel is almost three times that
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Figure 8. Caomparison of the variation in the amount of heat
removed by a mild steel asperity pair to that removed by a
mild steel-stainiess steel asperity pair with the non-dimensional
contact time ¢/t..
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TABLE 1lI
Values of the effective matching function I.g for several materials sliding
against mild steel (AIS/ 1020). Load =20 N, Uy = 2 m-s— 1.
Material o x 107° A kq Tt
(m%.s71) (K=Y (W LK | (Wm LK™
Sapphire™{ 1.326 —0.00081 28.2 —13.9348
Tool steel (AISI 52100)* 0.956 —0.0004 35.4 —12.234
Stainless steel {AIST 304 HN)® 0.395 0.000874 13.8 —1.77
Zinc® 0.14 —0.000229 121.0 —20.86
Inconel® 0.31 0.002 9.133 2.6052
Mild steel (AIST 1620)® 0.79 —0.000486 51.823 —15.4308
Titanium® 0.932 —0.00017 21.9 —7.658

t superscript letters indicate material class.

of stainless steel (51.8 W-m™"K™! for the former and
13.38 W-m~'.K~! for the later), mild steel will dominate
the heat transfer process. This is so because the material
with the higher conductivity carries a bigger portion of
the dissipated heat. Consequently, the decrease in the
conductivity of the mild steel will overtake the increase
in the conductivity of stainless steel. This effect is better
illustrated in figure ¢ which depicts the variation in the
heat conducted away from the surface of contact with
the ratio ©@/6.ax. Notice that the rate of decrease in
the heat dissipation is almost identical for both curves.
Again, this is due to the dominant influence of the mild
stecl asperity.

6.4. Effect of the matching function
on the specific contact efficiency

Figure 10 is a plot of the specific dissipation
efficiency, 7., against the time of contact for the two
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Figure 9. Comparison of the variation in the amount of heat
removed by a mild steel asperity pair to that removed by a mild
steel-stainless steel asperity pair with the non-dimensional
temperature rise @/Gn,x.
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Figure 10Q. Variation In the specific contact efficiency 5, of
the asperity pairs of figure 8 with actual time of contact.

asperity pairs of figures & and 9. The nominal load and
sliding speed are the samc as those of the previous
figures. Notice that, despite the increase in the amount
of heat removed by the mild steel-stainless steel asperity
pair, relative to that removed by the mild steel pair,
the specific cfficiency of the former is considerably
smaller than the later. An interesting feature of the
figure, however, is the change in 5, with respect to
time, which is slower for the mild steel-stainless steel
pair than that of the mild steel pair. This is due
to the increase in the conductivity of stainless steel
with temperature. Essentially thc same effects can be
observed in figure 11 which traces the variation in n,,
with respect to temperature for the same asperity pairs.

The choice of the rubbing materials so as to achieve .
positive matching function is always possible for class b
rubbing pairs. The reason is that the I' values for
each material are inherently positive. The value of this
parameter is, however, negative for class a materials
due to the negative value of the 3 coefficient. This poses
a challenging problem when either a class ¢ material is
to rub against a class b material, or when two class a
materials rub against each other.
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Figure 11. Variation in the specific contact efficiency 7, of the
asperity pairs of figure 8 with the instantaneous temperature
rise at the centre of the contact spot.

In the first case, the situation is complicated if
the conductivity at room temperature of the class a
material is considerably higher than that of the
class b material, with the former dominating the heat
conduction process because it bears the biggest portion
of the thermal load. Consequently, regardless of the
improvement in heat removal conditions offered by the
increasing conductivity of the class b material, the
specific efficiency 7, of the asperity pair will drop. This
applies to the example considered in this work, as the
room temperature conductivity of mild steel is more
than three times that of stainless steel (see table I7).

In the case of class a rubbing pairs, the matching
function is inherently negative due to the negative 3
coefficients. This case clearly poses a strong potential
for accelerated thermal-induced failure as the drop in the
conductivity may induce an accumulation of frictional
heat in the contact and the sub-contact layers. In
essence, the control of the heat dissipation away from
the surface, s0 as to minimise thermal damage, has to be
attempted through the control of the parameter I, i.c.
by increasing the positive slope of the heat penetration
coefficient with tempcrature.

6.5. Effect of a thin layer
on the matching function

Recalling equation (18a and b), we may conceive that
the control of the parameter I may be achieved through
either magnifying the product 8 4o or minimising the
effect of the diffusivity. The objective in the first option
is to stabilise the variation in the conductivity with
temperature. That is, minimisation of a negative g
coeflicient or maximisation of a positive F coefficient.
The objective in the second option is to obtain a lower
effective diffusivity. The difficulty here is the coupling
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between the conductivity and the diffusivity of the
same material: in general, high thermal conductors
possess also high thermal diffusivity [11]. Perhaps an
effective solution is the application of a thin coating
to the thermally dominant material [12]. In this way,
the individual I' values would now represent a resultant
value, combining that of the material and the coating,.
If the coating slightly reduces the thermal conductivity
of the dominating material, but compensates for
the negative B coeflicient, then egqual thermal load
sharing would be realised. Consequently, the chance
of neutralising the destructive effect of the latter is
greatly enhanced.

To examine the above hypothesis, a set of calculations
was performed for the same rubbing pairs introduced
above, but taking into account the presence of a
10 pm thin layer of Inconel on one of the mild
steel asperities, Tuble IV summarises the changes in
the matching function due to the presence of the
Inconel layer. Note that the application of the layer
causcs the effective room temperature conductivity to
decrease: from 51.8 W-m™1-K ™! for mild steel to around
26 W-m K™! for the layer and the substrate. This
is accompanicd by a positive change in the effective
3 coefficient from about —0.000486 for the former, to
around 0.000759 for the latter. In this manner, a drop in
the matching function at higher temperature gradients
is largely avoided. This is apparent in figure 12, which
compares the behaviour of the matching function for
both rubbing pairs with and without the deposited
layer. Notice that the presence of the layer significantly
enhances heat removal for the mild steel pair, especially
at higher temperatures.

The improvement in heat removal, however, may he
achieved at the expense of the room temperature con-
ductivity. This was seen in the present case, where the
room temperature conductivity dropped by almost an
order of magnitude. This may lead to an initial drop
in the amount of heat transferred in the beginning
of the contact cycle, as compared to the case where
no layer is deposited. However, with time progression
the temperature rise will increase, and the matching
function will be dominant, with the effect that the ef-
ficiency of heat removal will be enhanced due to the
positive 3 coefficient. The result will be that the total

TABLE IV
Comparison of the values of the effective
matching function I'.g for a mild steel,
and a mild steel-stainless steel rubbing pair,
with and without a 10 um thin layer applied
to the mild steel asperity.

g (Wm 2K with 10 pm without
Inconel layer layer

Mild steel-mild steel —2.933 —15.4308

Mild steel-stainless steel 5.5185 —1.77
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Figure 12. Effect of applying a thin coating on the behaviour
of the matching function I.g for the asperity pairs of
figure B8, with temperature. Two cases are compared: both
metals rubbing without the layer, and the effect of a 10 mm
thick Inconel layer applied to mild steel. Load =20 N, and

Uglia = 2 m~s_1.

amount of heat conducted throughout the contact cycle
would be higher in the presence of a layer than the
armount for mild steel by itself. This may be verified by
comparing the values (in figure 12) of the matching
function for mild steel with and without a layer,
especially at higher temperature rises {(above 200 °C).

7. SUMMARY AND CONCLUSIONS

The change in the thermal properties of rubbing
materials with temperature influences frictional heat
removal. The temperature rise induces variation in the
so-called ‘coefficient of heat penetration’. This variation
was termed the matching function of a material. The
sign of the effective matching function, that of the
rubbing pair, was identified as an indicator of the nature
of heat removal in a contact cycle.

The sign of the matching function follows closely
the sign of the temperature coefficient of thermal
conductivity 8 of the material. For class a materials
{negative 3 coefficient), the matching function assumes
a negative sign. This implies a drop in the rate of
heat removal with teraperature increase. By contrast,
the mateching function in case of class b rubbing pairs
assumes a positive sign. This implies an increase in
the rate of heat removal with temperature increase. An
intcresting casc arises when a class @ material slides
against a class b material. In such an event, the material
with both a higher room temperature conductivity and
a higher product 8 ko will dominate heat removal.

A criterion for the thermal compatibility of rubbing
materials is also proposed. This criterion requires the
choice of materials for rubbing applications to be made

10 100 1,000

o as to maintain, in order of preference, a positive, zero,
or slightly negative matching function. Subsequently
this criterion was used as a guide to enhance the heat
transfer between a rubbing steel pair by applying a
tribological thin coating to the dominant material.

It is recognised that other parameters such as
strength, toughness, hardness, and tribological com-
patibility. play a key role in the selection of suitable
materials for rubbing applications. While thermal com-
patibility may not dominate, it is envisaged that a
comprehensive thermal compatibility map will provide
some additional criteria for reducing the bewildering
range of available materials.
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APPENDIX A

Finite difference derivation
of the model equation

The total amount of heat flowing away from the
contact spot into a solid is given by [13] as:

fk—('?t dA}dt (A1)

I — 12

where d/dn denotes differentiation along the outwards-
drawn normal unit vector to the boundary surface
clement dA, and 7 is the position vector. For 1-D
heat flow and a nominally flat contact spot in the X-Y
plane, equation (1) may be written as:

o [ rimena

ti—t2 Jyy 2=:0

}dt (A-2)

Computing the inner integral, cquation (2) takes the
form:
tz

ar
) k a—Z(z,t)‘zzoAc dt (A-3)

ty—t2

To trace the rate of heat flow through the contact at
infinitesimal time increments, we express equation (3)
in a finite difference form as in [14]:

tp+ At
AQ = —Au/ k{ T2+ 42 t)

t—t+ At

{A-4)
Invoking the mean value theorem, equation (4) may
be integrated as:

- AZ

AQ T(Zg + AZto + At) —
= =

T(Zo,tg + At) }'
Z=0

(A-5)

Summing the heat penetrating through the surface
Z = 0 into cach of the rubbing solids we may write:

= — A [kl{H(AZ tA); E—)(D,ti)}

+k{9(AZt) e(oz)H (A6)
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(Zo,f)}lzzodt

where © denotes the temperature rise above the
initial temperature T(Z,t;). Finally upon expressing
the thermal conductivity of each solid in the linear form
k(©) = k(1 + 50), we may express the rate of heat
penetrating the contact spot towards the bulk of the
asperities as:

G(AZt) —
G =~ Ak 1+ g 00l { ) 1

Q(Az’tg; O0,t:) }J (A-7)

&(0,4) }

+kog[L = 2 00,1 {

Equation {A-7) is identical to eguation (3) in
the main text except that the dependence of the
temperature rise on time was omitted for convenience.

Note that the temperature gradient underneath the
asperity is, in essence, non-linear. This may be remedied
in the current formulation by the proper choice of the
diffusion length AZ [10]. For this reason we choose the
diffusion length so as to yield the actual value of the
gradient at the point of interest along the axis of the
asperity.

Accuracy range for the model equation (3)

The idea implied in the derivation of equation (3) in
the main text is to express the temperature gradients
in both rubbing members in terms of instantaneous
quantities. That is, to trace the evolution of the
temperature gradients on both sides of the contact
spot {and thereby the quantity of heat dissipated
towards the bulk of the material) at infinitesimal
time increments #; within the contact cyele. This is
achieved by calculating an instantaneous temperature
difference [@s — Qh](t") and a maximmm instantaneous
penetration depth Z,_.., (¢t} Through the substitution
of these instantaneous quantities in a finite-difference
formulation of the Fourier equation, the heat dissipated
away from the contact spot is expressed as a rate (heat
flow per unit time). This allows for freezing the time
parameter, or in optical terms, allows for the frame-by-
frame study of the gradients and the quantity of heat
transferred. Such an idea is frequently invoked in the
optical measurements of the instantaneous displacement
fields [15]. Naturally, one may question the domain of
validity of such an approach. Indeed, this approach is
valid only for very small times (order of 10-100 ps),
a time domain which includes the duration of contact
between the micro roughness for practical nominal loads
and sliding speeds [16].

To enhance the accuracy of the caleulations, two
points have to be addressed. Firstly, what is the relation
between the time step (¢) and the depth of penetration
AZ (or Zp,..), and, secondly, what is the criterion by
which this penetration depth will be judged small so as
to allow for the negligence of the storage term:

L ftn+At /Zp p(' T
at f, Jo 0

(A-8)
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The first question may be answered by appealing
to the well-known Von Neumann-Courant stability
criterion. For the finite-difference formulation of the
1-D equation the critical size of the co-ordinate step AZ
is related to the time step by:

AZ<V2at (A-9)

where « is the thermal diffusivity of the material.
Satisfying equation (A-9) ensures that the errors in the
temperatures are minimal.

To address the second question (which is more
critical to the model equation), we first note that the
semi-infinite body solution was used to evaluate the
maximum penetration depth, that is, the depth of the
so-called thermal layer Z; . . In this formulation, the
time-dependent quantity of heat conducted away from
the surface is written as in [13]:

oT (Th —T)
t)—k==(Zt =Ck———+ A-10
o) —k 5028 Jat (A-10)
where C is a constant almost equal to T2, and de-

pending on whether the type of solution is approximate
or exact, and 7; is the initial temperature at the sur-
face Z = 0. The maximum penetration depth that may
be used to calculate the quantity of heal without the
storage term is equal to 2 {at}!/2.

Now, iI cne assumes first that the asperity was
initially at a uniform temperature 7}, and one adopts
the definition of the ‘thickness of the thermal layer’
as the thickness beyond which, for practical purposes,
there is no heat flow {and consequently no temperature
rise above the initial temperature), then onc may write:

z2=0

oty =3k Oz
J

_JZ%_k{{TO—T(ZZZPmnx)
< - 7 2. /a1
i

} }tl (A-11)

This eqguation is identical to equation (3), which
starts the analysis, except that the latter was derived
from a finite-difference-based formulation.

APPENDIX B

Combining the thermal properties
of the layer and the substrate

To determine the value of matching function when a
thin coating is applied to one of the contacting surfaces,
the equivalent thermal properties and their respective
variation with temperature have to be evaluated. In this
appendix we derive the cxpressions used to compute
such cquivalent quantities.

B.1. Calculation of the equivalent
diffusivity a.,

The thickness of the applied coating (layer), &, which
is known a priori, represents the distance that must be
travelled by a temperature pulse originating at the
asperity tip to reach the substrate material. Upon
penetrating the thickness of the layer, the strength of
the original pulse has decayed to some new value. So the
problem reduces to the computation of two quantities:
the first is the strength of the temperature pulse after
it penetrates the layer (i.e. at the interface between the
layer and the substrate). Once this quantity is found,
we proceed to calculate the penetration depth of the
new pulse into the substrate. That is, to calculate Z,__,
for the substratc material under the influence of the
reduced temperature pulse. This would be represented
by the distance which is covered until this new pulse
©,. decays to the 1 % criterion developed in section 4.

Applying equation (11) we may write:

&= _ {B-1)

Substituting equation (B-1) in equation (10}, the
strength of the pulse at the interface between the
substrate and the layer is then given by:

éL/S = CI‘fC(f]) (B—Q)

recalling the definition of the parameter 6, we may
write the actual strength of the temperature pulse at
the interface as:

O1,5(t) = BL;s Bo(t) (B-3)

Using the results of equation (B-3) we may calculate
the penetration depth into the substrate due to a pulse
of strength @ :(t) operating at the interface. Thus we
obtain from equation {13):

by = ZU.UIQL/:, =26Vt {B-4)
where

erfe(é;) = B,

Now, the total penetration depth into the layer—
substrate has to equal the penetration depth that would
have been calculated based on an equivalent diffusivity
Qegq:

boor = 8 + s = Zo.01.q {B-5)

Equation {B-6) may be written as:
biot =4 v/ Cleq i (B-6)
from which the equivalent diffusivity o.q is evaluated.

By repeating the same procedure using the value
of the diffusivities of the layer material and of
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the substrate material at different temperatures, a
corresponding array comtaining the variation of the
substrate penetration depths with temperature, 6,(&),
is obtained. This may be then used to calculate the
equivalent thermal conductivity of the layer substrate
combination.

B.2. Calculation of the equivalent
conductivity k.

Assuming perfect contact between the layer and the
substrate, the equivalent conductivity may be calculated
as in [3[:

6] -+ 65

keq - 6l/kl +65/k:5

(B-7)
Substituting the value of 8/(6), the equivalent

conductivity as a function of temperature is written
as:

&

keq (8) = ki (9)

8
ke (@) (B-8)

Equation (B-8) yields the value of the equivalent
conductivity at discrete temperatures. This in turn may
be modelled in the linear form:

keq (B) = koyq (L + fBeq B (B-9)

Equation (B-9) was used to calculate the equivalent
temperature coeflicient of conductivity Zeq, and to pre-
dict the variation of the equivalent thermal conductivity
for the layer—substrate combination. The results are de-
picted in figure B-1, where the conductivity of mild
steel (AZSI 1020) and Inconel (X-70) are plotted along
with the equivalent conductivity for a 10 mm thick
layer of Inconel applied te mild steel both at discrete
temperatures and as modelled by equation (B-9).

Thermal conductivity (Wm™K)

) { . 1 | | | L 1

1] 100 200 300 400 500 600 700 800 00

Tempersture ( C )

Figure 13. Variation of the effective thermal conductivity of
the combination of the Inconel layer and the substrate with
temperature.
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APPENDIX C

C.1. Effect of the variation in the thermal
conductivity on the penetration
depth 7,__,

Equation (10) is the solution of a linear constant
conductivity problem. To obtain the solution of the same
problem when the conductivity varies with temperature,

we invoke the so-called Kirchoff transformation [13)]

which is applied as follows.

Assume that the thermal conductivity varies linearly
with temperature, i.e.:

k(T) = ko(1 + BT) (C-1)

Define a new variable, U7, such that:

T

L | kmyar (C-2)

U:k_u

Ty

Substituting this new variable in the heat equation,
we obtain an equation that is identical to the original
heat equation, except that the solution now will yield
the solution in terms of the transformed variable U
(equivalent to 8 in equation (10) of the main text).

To obtain the variable conductivity solution, we
apply to equation {10) the inverse transformation:

T:%{\/1+26U—1} (C-3)
£
and we ohtain:

T:%{\/1+2ﬁ§—1} (C-4)

where & is the solution of the linear constant conduc-
tivity problern and T is the solution of the variable
conductivity problem.

Now since 0< B8 <1, it follows that the maximum
error in the estimate of the penetration depth introduced
by neglecting the variation in the conductivity with
respect to temperature is encountered when € = 1.
Hence the maximum error, @msx, may be defined as
the ratio of the actual to the constant conductivity
temperatures when & = 1, i.e.:

puex == = 2{VIT23-1}  (05)

substituting the value of 3 for the materials used (from
teble 111) in equation (C-5), the maximum error is
readily obtained.

Table V gives the value of the maximum error for the
materials used in the current investigation calculated
by means of equation (C-5). It will be noticed that
this error is quite insignificant. This is not surprising,
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as the penetration depth is an explicit function of the
diffusivity (and not the conductivity).

C.2. Effect of the variation in the thermal
effusivity with temperature

There arc two quantities that contribute to the value
of the effusivity: the thermal conductivity, and the
thermal capacity (product of the density and the spe-
cific heat). For metals, the specific heat increases with
temperature elevation, whereas the density decreases
slightly (by a factor of 5107%°C~! [17]) with tem-
perature. The change in the conductivity, however, is
two to three times the corresponding change in the
diffusivity. For example, the change in the diffusivity of
Duralumin at 600 °C is approximately —4 % of that at
room temperature, while the corresponding change in

conductivity is approximately 13 % of that at room tem-
perature. Essentially, the same applies to steels, where
the change in the diffusivity at 900 °C (for example)
compared to the room temperature value is almost ane
third of the corresponding change in conductivity [22].
So the change in the thermal capacity tends to some-
whal offset the effect of the variation in the conductivity
with temperature. As such, the dominant thermal in-
fluence at the interface, surface Z =0, is the thermal
conductivity, as explicated in the work of Storm [17} and
Ling and Rice [18], Abdel-Aal [8, 19] and Abdel-Aal and
Smith [9]. Table VIsummarises the value of the effusiv-
ity for the materials used in the current investigation
at both room temperature and at 1200 °K. It will be
noticed that the variation in the effusivity at this high
temperature is still fairly moderate, so that at practical
temperatures typical of sliding systems, this variation
may be considered insignificant.

TABLE V
Maximum error introduced by neglecting the variation in the conductivity
in the calculation of the penetration depth of a temperature pulse.
Material B8 (°C) e %
Sapphire —0.00081 1.00041 —0.0041
Tool steel {AISIn 52100) —0.0004 1.0002 —0.0002
Stainless steel (AIST 304 HN) 0.000874 0.9995 0.000437
Zinc —0.00023 1.000115 —0.00011
Inconel 0.002 0.999 0.0001
Mild steel (AISI 1020) —0.00049 1.0002 —0.00024
Titanium —0.00017 1.000085 —8.5:107%
TABLE VI
The affusivity of the materials used in the current work
at rcom temperature and at 1 000 °K.
Material 2 (293 °K) £2 (1200 °K) wl
Sapphire 9223 8301.2445 0.9
Tool Steel (AIST 52100) 13507.92 14 121.74 1.045
Stainless Steel (AIST 304 HN) 7 493.175 10 748.02 1.434
Zinc 18 237.79 17 540.72 0.962
Inconel 6761.144 11 270.67 1.66
Mild steel {AISI 1020) 13 835.22 13 980.7 1.01
Titanium 7 172.385 7 728.676 1.078

T w =12 (1200 ° K)/92 (203 °K).
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