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Abstract--This paper presents a theoretical model for the prediction of the variation in heat removal during the dry sliding of 
metallic surfaces with the inclusion of variable thermal properties. It is shown that the temperature-induced change in the so-called 
'coefficient of heat penetration' is influential in the nature of heat dissipation at the interface. This change, termed the 'matching 
function', is utilised to propose a possible criterion for the choice of 'thermally compatible' materials for rubbing applications. 
For the optimisation of thermal conditions, this criterion requires the selection of the rubbing pair, so as to maintain, in order of 
preference, a positive, zero, or slightly negative matching function. A preliminary study of mild steel rubbing against the same 
material, and against stainless steel, is presented to illustrate the relative effects of both conductivity and the matching function. 
It is shown that the Mtter provides an indication of the nature of heat removal during contact. It is proposed that this criterion 
may be extended to the choice of thermally efficient tribological coatings to enhance the transfer of frictional heat away from the 
interface. This is directly related to the design of frictional tribo-systems such as brakes and bearings. ~) Elsevier, Paris 
thermal compatibility / matching function / flash temperature / heat penetration / penetration depth / contact efficiency 

R 6 s u m 6 -  Compatibilit6 thermique de surfaces m6talliques utilisc~es en situation de frottement. Dans cette 6tude, un 
module th6orique, incorporant des propri6t6s thermiques variables, pr6disant les variations de transport de chaleur provoqu6es 
par le frottement ~ sec de surfaces m6talliques, est pr6sent6. On y d6montre que la variation du ~¢coefficient de p6n6tration de 
chaleur~ provoqu6 par le changement de temp6rature, d6pend de la nature de la dissipation de la chaleur ,~ I'interface. Cette 
variation, d6finie comme cCfonction de compatibilit6~, est utilis6e pour d6finir un crit~re possible pour le choix de mat6riaux 
~thermiquement compatibles~ pour des applications impliquant du frottement. Afin d'optimiser les conditions thermiques, la 
s~lection de la paire des mat6riaux en frottement dolt se faire de mani~re ~ maintenir la fonction de compatibilit6, par ordre 
de pr~f6rence, positive, nulle ou I~g~rement n6gative. Une 6rude pr61iminaire avec de I'acier doux frottant contre un mat6riau 
similaire et de I'acier inoxydable est pr6sent6e de mani~re ,~ illustrer les effets relatifs ~. la conductivit6 ainsi qu'~, la fonction de 
compatibilit6. II est d6montr~ que cette derni~re fournit des indications quant ~ la nature de la dissipation de chaleur durant le 
frottement. II est sugg6r6 que ce crit~re pourrait ~tre utilis6 pour le choix d'un recouvrement de surface qui soit efficace pour 
61oigner de I'interface la chaleur cr66e par frottement. Cela s'applique pour la construction de syst~mes ~ friction tels que les 
freins ou les roulements. ~) Elsevier, Paris 
compatibilit6 thermique / fonction de compatibilit6 / saut de temperature / p6n6tration thermique / profondeur de p6n6tration / 
efflcacit6 de contact 

Nomenclature 

A~ area of conduc t ion  . . . . . . . . . . . . . . . . . .  m 2 

A ~  real  a rea  of con tac t  be tween  the  s l iding 
solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  m 2 

B in i t i a l  coefficient of hea t  p e n e t r a t i o n .  W . m - 2 . s  -1  

P average contact pressure ............ N.m -2 

Q~is~ rate of total heat dissipation away from 

the  surface . . . . . . . . . . . . . . . . . . . . . . . . .  J . s -  1 

* haabde la@uncc .edu  

Qgen ra te  of t o t a l  hea t  genera t ion  a t  the  

surface . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Uslid s l id ing speed . . . . . . . . . . . . . . . . . . . . . . .  

Zp diffusion leng th  . . . . . . . . . . . . . . . . . . . .  

Zpm~x d e p t h  from the  surface at  which a 
t e m p e r a t u r e  rise 1 %  of t h a t  a t  the  
surface is felt . . . . . . . . . . . . . . . . . . . . . .  

erfc  c o m p l e m e n t a r y  error  funct ion  
e r f c (x )  = 1 - e r f ( x )  

J . s - 1  

re . s -1  

m 

m 

27 

~ " ,4  



H.A. AbdeI-Aal  

ko reference thermal conductivity . . . . . . .  W-m-l .K -1 
q{ rate of instantaneous heat dissipation 

by an individual pair of contacting 
asperities . . . . . . . . . . . . . . . . . . . . . . . . .  J.s- 1 

ra radius of the contact spot between two 
contacting asperities . . . . . . . . . . . . . . . .  m 

tc duration of a single contact cycle . . . .  s 
t i instant of time within the contact cycle s 

Greek symbols 

F individual material matching function 
Feff effective matching function for the 

rubbing pair 
Ob bulk temperature rise between two 

asperities . . . . . . . . . . . . . . . . . . . . . . . . . .  o C 
Omax maximum potential temperature rise 

at the end of the contact cycle . . . . . .  °C 
(gz temperature rise at a depth Z from 

the surface . . . . . . . . . . . . . . . . . . . . . . . . .  °C 
slope of the heat dissipation with 
temperature . . . . . . . . . . . . . . . . . . . . . . .  W-m-2.° C-  1 

c~ thermal diffusivity of the material . . ,  m s.S- 1 
/3 temperature coefficient of the thermal 

conductivity . . . . . . . . . . . . . . . . . . . . . . .  K-  1 
~a efficiency of an asperity pair to dissi- 

pate heat 
/a nominal coefficient of friction 

1. INTRODUCTION 

Between two sliding solids in contact, there will be 
a number  of pairs of micro-asperity contacts, the total 
area of which represents the true area of contact. When 
an individual asperity pair starts to slide, a quantum of 
heat, causing a surface temperature rise, is generated. 
As a result, a temperature gradient normal to the 
contact spot will develop. Concurrently, the thermal 
conductivity of both materials will undergo some change 
(either an increase or decrease) due to the temperature 
rise. Continuous sliding will lead to the development 
of a so-called mechanically affected layer in which a 
strong temperature gradient takes place [1]. This layer 
will entrain a temperature distr ibution which induces 
a corresponding point-wise variation in the thermal 
conductivity. This leads to variation in the heat removal 
with respect to position from one sub-layer to another. 
In this way, the variation in the thermal properties 
of the rubbing pair assumes an important  role in the 
dissipation of frictional heat. 

Now suppose that  the contact spot between any 
two asperities lies within a mathematically flat plane 
at the surface Z = 0 (where the axis Z points in the 
direction of the outward normal to the contact spot). 
Heat will be conducted into both solids where there 
exists solid-to-solid contact. That  is, essentially, heat 
flow is initiated at this mathematical  plane, i.e. at the 
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tips of the micro-asperities. The role of the contact 
spot in the flow of friction heat may be viewed as 
analogous to the role of a valve or a gateway in fluid 
flow, in the sense that  heat flows (penetrates) through 
the contact spot towards the bulk of the micro asperities 
(and eventually to the bulk of the rubbing solids). To 
utilise the thermal storage capacity of the rubbing 
solids, this contact spot has to maintain  maximum 
thermal efficiency. So, at all t ime increments within the 
contact cycle, a maximum possible rate of heat flow has 
to be maintained. This heat flow rate, transferred by 
conduction according to the model used in this work, is 
governed explicitly by the product of the conductivity 
and the temperature gradient at the surface Z = 0, as 
may be inferred from Fourier's law. In this way, the 
variation in the conductivity with temperature assumes 
an important  role in maintaining the thermal efficiency 
of the contact spot (or the gateway in the fluid analogy). 
It is recognised that  the thermal effusivity of the rubbing 
materials and its respective variation with temperature 
may affect heat conduction away from the contact spot. 
However, for the materials used in this investigation 
and the temperatures encountered for practical sliding 
systems, the variation in the effusivity with temperature 
is considered immaterial  (see appendix). 

Variation in the thermal conductivity may be classi- 
fied into three broad categories according to the change 
in the conductivity with temperature;  these are sum- 
marised in table L Based on this classification we may 
conceive the following scenario. A class a material is 
rubbing against another class a material under slid- 
ing conditions that  result in a high temperature rise. 
When the materials start  to heat at the points of 
true contact, the conductivity will drop significantly. 
Meanwhile, heat continues to be generated at the in- 
terface due to continuous rubbing. As the temperatures 
increase, the ability of the contact spot, on both sur- 
faces, to maintain  the opt imum rate of heat flow will 
decrease. Now if the rate of heat generation at the 
interface is greater than the rate of heat penetrat ion 
through the micro-roughness, heat will accumulate at 
the interface. This heat will further raise the interfacial 

TABLE I 
Classification of materials according to the variation 

in their thermal conductivity with temperature. 

Material Conductivity behaviour with temperature 
class 

Class a 

Class b 

Class c 

Conductivity drops with temperature elevation 
(e.g., carbon steels, sapphire, and zirconium) 
Conductivity increases with temperature elevation 
(e.g., stainless steels, duralumin, and cast iron) 
The temperature conductivity curve includes 
an inflation point; that is, the conductivity 
of the material increases (or drops) with 
temperature, reaches a maximum (or a minimum), 
then drops (or increases); 
(e.g., titanium, zinc and vanadium) 
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t empera tu re  causing a further drop in the conduct ivi ty  
and rendering the heat  removal less efficient. If such a 
s i tuat ion prevails for a sufficiently long t ime, thermal  
failure of the  rubbing pair  becomes imminent.  For this 
reason, it is impor tan t  to address the fundamental  
question of how to quantify and control the  difference 
between the generated and the dissipated heat, where 
we unders tand  dissipated heat to mean the heat  which 
penet ra tes  through the contact  spot into both  rubbing 
members.  Perhaps more important ly ,  how should the  
designer, who is frequently faced with a s i tuat ion where 
pre-set operat ion parameters  are imposed, choose the  
mater ia ls  of rubbing members so as to el iminate this 
difference or confine it to an absolute minimum ? 

In this paper  the fundamental  semi-infinite body 
solution [2] is used to identify a characterist ic  
t empera tu re -pene t r a t ion  depth  which defines the extent  
of the t empera tu re  effects in the bulk of the material .  
By expressing heat  dissipation in terms of the penetra-  
t ion depth,  two fundamental  quanti t ies are identified. 
The first is te rmed specific contact efficiency, which 
represents an upper  bound for the  capabi l i ty  of a single 
contact ing asperi ty  pair to dissipate an applied thermal  
load. The second, te rmed the matching function, rep- 
resents the change in the  so-called coefficient of heat 
penetration [3] (or thermal  effusivity). This relates the 
change of the  thermal  conduct ivi ty  with t empera tu re  
to the  diffusivity of the mater ia l  and may be used to 
predict  the  nature  of heat  removal with t empera tu re  rise 
and thereby the thermal  compat ib i l i ty  of two materials.  
A cri terion for the thermal  compat ib i l i ty  of two rubbing 
materials ,  based on the value of the matching function, 
is proposed. The cri terion requires the selection of the 
rubbing pair,  so as to maintain,  in order of preference, 
a positive, zero, or slightly negative matching function. 
The matching process is demonst ra ted  by s tudying the 
heat  removal for two rubbing pairs (mild steel (AISI 
1020)-mild steel, and mild steel-stainless steel (AISI 
30~ HN)). It is to be noted, however, tha t  the scope of 
this work does not extend to the t rea tment  of the man- 
ner in which friction-induced heat  is divided between 
the rubbing members.  

2. THERMAL ANALYSIS 

Two conforming rough solids will establish true con- 
tac t  between a finite number of pairs of contact ing 
asperities.  The asperi ty  pair  may be sufficiently mod- 
elled as a pair  of spherically capped protrusions which, if 
p lot ted on a one-to-one scale, would resemble two semi- 
infinite bodies with a circular contact  spot  between 
them [4]. The model  of heat  transfer  adopted  in the 
current work follows tha t  of Dundurs  and Panek [5], in 
which the following assumptions are made: heat  t rans-  
fers only where there is meta l - to-meta l  contact  (i.e. at  
the contact ing asperit ies only); the  effects of radia t ion 

and the effects of an intervening fluid are insignificant; 
and there is no resistance due to an oxide film or other 
contaminat ion of the surfaces. 

Consider a system of two contact ing asperit ies sliding 
relative to each other (figure 1). Choose a point located 
at  the centre of the  moving contact  spot (point g in 
figure 1). The point  will slide towards the leading edge 
of the mat ing  asperity, point  A, at  t ime t = 0 + (say). 
The point  will continue to slide across the contact  spot  
until  it reaches a point,  B, located at the trai l ing edge 
of the spot,  at t ime t = t~. It thus concludes a single 
rub (or a single contact  cycle) in which a distance, AB, 
equal to the d iameter  of the contact  spot,  is covered in 
a t ime t~. When  the point  moves with a uniform speed 
U~l~d, the dura t ion of a single contact  cycle is defined as: 

2 r a  

t c -  Us l id  ( l )  

To trace the thermal  history of point g, it is 
necessary to divide the t ime of contact  into j equal 
t ime increments, so tha t  the t empera ture  of point g at 
any moment  within the contact  cycle is a function of 
the t empera tu re  rise at previous times: 

i 

Og(t) = ~ Og(t0 (i = 1,2,3,4 . . . .  ,j) (2) 
0 

[. t,[ 
\ 

% 

i ~ J n ~ t 

U ,,,i 

time J g ; A  i i 
L, 

AB=2 r. 

Figure 1. Schematic showing key variables of the model of 
contact used in the present work. Point g, located at the 
centre of the moving contact, slides with a uniform velocity, 
(-]slid. The point approaches the leading edge of the stationary 
asperity, point A, then continues to slide until it reaches 
the trailing edge, point B. The duration of motion is tc, in 
which point g covers a distance .413 equal to the diameter of 
the contact spot. Concurrently, the temperature of the point 
@g(ti) increases as a function of time. 
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Note that,  according to equation (2), the maximum 
temperature rise of the point will be reached at t¢ 
where the contact spot has covered a distance equal to 
its diameter. At each time increment, a temperature 
gradient will form in each of the rubbing asperities, 
rising towards the contact spot, and causing heat to 
flow towards the bulk of the materials. Due to the 
temperature rise, however, the thermal conductivity of 
both materials will vary and hence the product of the 
conductivity and the temperature gradient will change 
accordingly. Applying Fourier's law of conduction, and 
assuming that  the conductivity of both mating materials 
varies linearly with temperature, the heat conducted 
away from the contact spot assumes the form (see 
appendix 1): 

qa : q a ( t i ) =  [kol(1-~-~l(~g) ~Ogc{~b  } 
~. Zp 1 

~- k02 (1 nu/~2 (~g) g O g ~ O b  ~ ] (ti) A~ (3) 
~. Zp J23 

Equation (3) may be extended to represent the 
amount of heat dissipated by n contacting asperity 
pairs, by summing the individual contributions of all 
the contacting asperity pairs. Whence it follows that  
the total heat dissipated through the surface per unit 
time is: 

Qdi~(ti) = Qdiss ~ nq~(ti) (4) 

However, the total heat generated at the contact 
interface between the two solids is: 

Qgen(ti) = Qgen = #PU~lld A~ ( 5 )  

where P is conventionally considered as the hardness 
of the softest of the contacting pair for plastic contact 
conditions or the Hertzian contact stress for elastic 
contact conditions [6], and # is the nominal coefficient 
of friction. Note that  equation (3) may be interpreted 
as an upper bound to the capability of a contacting 
asperity pair to dissipate a thermal load (given by 
equation (5)) applied at the interface. 

3. HEAT DISSIPATION EFFICIENCY 

The maximum thermal load that  can be handled in a 
given sliding situation is proportional to the maximum 
heat dissipation capacity of a contacting asperity pair. 
Thus, the ratio of the maximum load to the actual 
total thermal load applied at the interface may be read 
as constituting a measure of a specific heat dissipation 
efficiency (~ )  of the asperity pair defined as: 

v ~  - • (0 < v~ < 1) (6) 
Vgen 
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The non-dimensional parameter V~ may also be 
viewed as the thermal loading limit of an asperity 
pair, and thus indicates the portion of the interracial 
thermal load shared by an asperity pair during rubbing. 
The higher this parameter, the higher the ability of the 
solid to withstand friction induced thermal loads. 

The influence of the asperities is not explicitly 
apparent in the model due to the definition of thermal 
efficiency used to develop equation (6)• This efficiency is 
taken to indicate the ratio of the rate of heat penetration 
through the contact spot-between two micro asperities 
q(ti) to the rate of total heat generation at the interface 
Qt°ot (equation (5)). On balance, the influence of the 
number of contacts on heat sharing may be explicitly 
deduced if the contact efficiency is, alternatively, defined 
as the ratio of the rate of heat penetration through 
the contact spot q(ti) to the rate of heat generation 

o n--ra at the asperity tip, i.e. Qtot , where the factor 
m assumes the values of 1/2 or 1/4, depending on 
the spacing between the micro-contacts [7]. In any 
case, incorporating the effect of the number of micro- 
contacts would not affect the fundamental trends of 
heat penetration. 

4. THE PENETRATION DEPTH 
OF A TEMPERATURE PULSE 

Consider the semi-infinite plane shown in figure 2. 
The material and its surface are at some given initial 
temperature, O0. At the time t + 0 the surface is set 
to a temperature Os(t), where t<tc. Now, define a 
normalised temperature O that  represents the ratio 
of the temperature rise at a depth Z, to the surface 
temperature, so that: 

O ( t ) -  ez(t)  
Os(t) (7) 

-D  

0$ ' X 

Z 

_~. 

® 

Figure 2. Schematic illustrating the development of a strong 
temperature gradient in the mechanically affected layer. The 
maximum penetration depth Zpmax is that depth at which a 
temperature rise amounting to 1% of that at the surface is 
felt• 
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The temperature field in the material is given by: 

30 320 
- ~ - -  (8) 3t 3Z 2 

with the boundary conditions: 

O = 0  t < 0 ,  0 < z < o o  
(9) 

O = 1  t > 0 ,  z = 0  

The solution to this problem is [1, 2]: 

= ~ exp {_(2}  d( = erfc(~) (10) 

where: 

Z 
-- (11) 

2 v ~ 5  

The solution, equation (10), may be regarded as 
the response of the material to a surface temperature 
pulse, where the maximum response corresponds to 
O = 1, while no response corresponds to O = 0, i.e., 
0 < Op < 1. The equation 

2f Op = ~ exp {_~2} d~ = erfc((p) (12) 

has the solution (~p), unique to a particular Op, such 
that:  

Zp : 2 ~pf~-t (13) 

which is defined as the penetration depth of Or. It 
follows that  a unit temperature pulse on the surface 
causes a temperature rise of at least Op to penetrate to 
a depth Zp. As an example, Op = 0.7 (a rise of at least 
70 percent of the original pulse) is felt at a depth of: 

Z0.z = 0.275 x 2 v / ~  (14) 

(using erfc(0.275) = 0.7). 

In this work, the maximum penetration depth will be 
considered as the depth at which a temperature rise of 
about 1 percent of that  at the surface temperature rise 
is located, i.e. Z0.m. Using erfc(2) ~ 0.01, this depth is 
given by: 

Zpraa x = Z0.01 ~'J 4 V ~  (15) 

The penetration depth given by equation (15) repre- 
sents a higher bound. This is because the temperature 
pulse applied to the surface of the asperity flows orig- 
inally in a one- dimensional manner along the Z axis 
until it reaches the bulk of the material, where it can 
travel in two or three dimensions. 

5. VARIATION OF HEAT DISSIPATION 
WITH SURFACE TEMPERATURE RISE 

Substituting equation (15) in equation (3), qO may 
be expressed as: 

4a = [k01( l+~lOg){  Og-Ob4V/~ }1 

Og)f,[ Og - Ob ~ 1 + k%(1 + & - - - -  A~ (16) 

Differentiating equation (16) with respect to the 
maximum temperature rise at the surface, the variation 
O~, in qO per degree surface temperature rise, assumes 
the form: 

~4~, /Aa  = ko~ [(20~ -Ob~)~l + l] 

+k%[ (20s-Ob2)~2+114 ~x/-~ = 4 - - ~ 1  (17) 

The parameter ~, which has the units of W.m-2 .K - 1, 
incorporates the changes in the flux permitted through 
the asperity contact per unit area per unit surface 
temperature rise, or the change in the so-called 
coefficient of heat penetration per unit temperature 
rise. To investigate the influence of this parameter on 
sliding, let us assume for convenience that  the surface 
temperature rise is considerably higher than the bulk 
temperature rise, i.e. O~ >>> Ob. This assumption is 
equivalent to stating that  the penetration depth of a 
temperature pulse extends to the location on the Z axis 
where no temperature rise is experienced. Under these 
conditions the variable ~ becomes: 

[kol 1 r k01 k0:1 (18a) 
f = 2 ° ~ L  v ~  + - - ~  J + L v ~  + v ~ J  

~o = Fl(Os) + F2(Os) + B = F~(Os) + B (18b) 

The parameter ~ represents the slope of the heat 
dissipation with temperature. The sign of this quantity 
is an indicator of the change in heat removal with 
temperature rise. It will be noticed from equation (18b) 
that  ~ is composed of two competing quantities, both 
of which are material properties. The first, B, is a 
positive constant, whereas, the second, F ~ ,  is a linear 
function of the surface temperature rise representing the 
temperature rise-induced perturbation in the coefficient 
of heat penetration. This is closely related to the change 
in the rate of heat conducted through a contacting 
asperity pair. 

Depending on the material class (as introduced in 
table i), Fe~ may assume a positive or a negative sign. 
While the positive sign is desirable, a negative Fe~ is 
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not favoured as it indicates a drop in the  amount  of 
heat  conducted as the surface t empera tu re  increases. 
This s i tuat ion takes place when a negative Fe~ is 
greater  than  B so tha t  it dominates  the heat  conduction 
process. In this  case, ~ will acquire a negative sign also. 
The rat io F~n/B for several materials  sliding against  
mild steel (AISI 1020), evaluated as a function of the 
surface t empera tu re  rise, is p lot ted in figure 3. Note 
tha t  the  effect of F ~  is more pronounced for class a 
mater ia ls  (negative ~3 coefficients), especially at  higher 
temperatures ,  so the  sign of T will be determined mainly 
by the sign of F ~ .  The function Fe~ may be used to 
characterise the thermal  compat ib i l i ty  of two contact ing 
materials.  

0.2 

i iiiiiiii 
o : : : : ::::: : : : :::i "£ ............. 

.o.2 ...... '~___i_.i._:_~_~i_i_~ ....... '~---L-;-i-;-;ii: - ' i/,-i-~i 

.o.,  . . . . . .  i . ._i__i__i.i.ii_i_i . . . . . . .  ! _ . / _ . _ L i . i  i :, i ! i . _  : i  

06 

I I0 I00 1,000 

maximum temperalure rise O, (°C) 

Figure 3. The variation in the ratio of the effective matching 
function -Pef~ to the room temperature coefficient of heat 
penetration, B, with temperature rise. All materials are sliding 
against mild steel (AISI 1020). Load = 20 N, Usnd = 2 m.s -1.  

The sign of the function F(Os) determines the nature  
of heat  removal away from the surface in a given contact  
cycle. If this  function is positive, the  amount  of heat  
conducted away from the contact  spot  will increase with 
t empera tu re  elevation, thus inhibit ing the  conditions for 
thermal  damage. In contrast ,  if this  function is negative, 
it indicates tha t  the amount  of heat  conducted away 
from the contact  spot  will decrease with t empera tu re  
elevation, thereby catalysing the conditions of interfacial 
thermal  damage. In this way, the function Fe~ may be 
used to characterise the thermal  compat ib i l i ty  of two 
rubbing materials.  In this paper ,  this function will be 
termed henceforth the  matching function. The cri terion 
for thermal  compat ib i l i ty  would thus be defined as 
follows: given a mater ia l  for a rubbing application,  what  
is the mat ing mater ia l  tha t  would insure, if possible, a 
posit ive matching function. Clearly this is not always 
possible, because other design constraints  have to be 
considered too. So the next desirable condit ion would 
be to keep the matching function at zero (implying 
a constant  heat  dissipation rate  for the dura t ion of 
the contact  cycle); or to achieve the minimum possible 
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negative value of the matching functions (implying the 
minimal  rate  of change of heat  dissipation per contact  
cycle). 

The main influence in equation (18-b) is the constant  
quant i ty  F = k o t 3 a  -1/2. The sign of this quant i ty  
follows the sign of the t empera tu re  coefficient of 
conduct ivi ty  /3. This in turn  depends on the mater ia l  
class [8]. For class a materials,  the /3 coefficient is 
negative; for class b materials,  this coefficient is positive. 
For class c materials,  however, the sign of the 
coefficient al ternates as a function of the inflation 
temperature .  So tha t  the conduct ivi ty variat ion of such 
mater ia ls  may be best modelled by two B coefficients, 
as explained elsewhere [9]. 

For a given sliding pair, the ratio F1/F2 assumes 
considerable importance when T is negative as it 
indicates which of the mat ing materials  is more likely to 
dominate  the heat  removal process by bearing a higher 
port ion of the friction-induced thermal  load. This rat io 
is given in table H for the materials  of figure 3 under 
the same sliding conditions. All materials  are sliding 
against  mild steel. Notice tha t  a positive F1/F2 in table I 
indicates the sliding of two class a materials  (i.e. two 
negat ive/3 coefficients). It may be noticed tha t  class b 
mater ia ls  are less dominated  by mild steel (compare the 
values of t i t an ium and tool steel to those of Inconel and 
stainless steel for example).  

TABLE II 
Ratio of the individual matching functions F1/F2 

for several materials sliding against mild steel (AISI 1020). 

Material class F1//"2 

Titanium 
Tool steel (AISI 52100) 
Stainless steel (AISI 304 HN) 
Zinc 
Inconel 
Mild steel ( AISI 1020) 

a-c 

a-b 

a--c 

~b 
a-a 

6.2764 
2.098 
-1.31 
0.5794 

--0.7378 
1 

6. RESULTS AND DISCUSSION 

6.1. Kinetics of the temperature 
gradient 

Figures ~ and 5 i l lustrate the evolution of the tem- 
pera ture  gradient  for a stainless steel-mild steel rub- 
bing pair. The pair  is sliding at  a speed of 2 m.s -1,  
under a nominal  load of 20 N, leading to a contact  
radius of about  20 Jim. Notice tha t  there are several 
factors which act s imultaneously to affect the evo- 
lution of the  t empera tu re  gradient.  Figure ~ depicts 
the  rat io of the instantaneous t empera tu re  rise to the 
maximum potent ia l  t empera tu re  rise at  the centre of 
the  contact  spot  p lot ted  against  the t ime of contact.  
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Figure 4. Variation in the instantaneous to the maximum ex- 
pected temperature rise, with respect to the non-dimensional 
time of contact t / t c .  Temperatures were evaluated using 
a variable conductivity solution [7]. Mild steel (AISI 1020) 
rubbing against stainless steel (AISI 304 HN). Load = 30 N, 
U s l i d  = 2 m - s  - ~ .  
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Figure 5. Variation in the penetration depth Z p m a x  with the 
non-dimensional contact time t/tc, for the rubbing pair of 
figure 4. 

Notice that the rate of temperature increase (slope of 
the curve) decreases with time. So the contact centre 
experiences approximately one hedf of the maximum 
potential rise approximately in the first 15 to 20 % 
of the duration of contact. This temperature rise, 
however, is not associated with a matching growth 
in the penetration depth shown in figure 5: for the same 
duration of rubbing, the temperature penetrates only to 
an approximate one third of the maximum potential 
penetration depth. This results in the temperature 
gradient reaching a maximum early in the rubbing 
cycle. Consequently, the capacity of the asperity pair 
to dissipate heat would also reach a maximum. So the 

efficiency ~?~ is expected to peak early in the cycle. 
Subsequent to this maximum, the rate of temperature 
rise is lower than that at the beginning of the cycle. 
Heat pulses however penetrate to a greater depth. 
That is, the value Zpm~ increases faster than the 
temperature increases (figure 5). So the temperature 
gradient (temperature difference/penetration depth) 
will drop accordingly. In other words, as the temperature 
gradient drops, the potential that drives the flow of 
heat will be minimised, so that unless this drop is 
compensated by an increase in the conductivity, the 
amount of heat removed away from the surface will 
reduce accordingly. 

6.2. Effect of temperature rise 
on the matching function 

The values of the matching function F~  for differ- 
ent materials rubbing against mild steel AISI  1020 are 
summarised in table II. It will be noticed that class b 
materials (stainless steel, and Inconel) provide a better 
thermal match than class a materials. This is due to 
the fact that the former have a positive F which delays 
the sharp drop in the rate of heat dissipation from the 
surface with temperature rise often displayed by class a 
materials. Note that as the value of the /3 coefficient 
increases the value of the matching function increases 
accordingly. So a material such as Inconel which has a 

coefficient of around 0.002 yields the highest positive 
F value, whereas for a mild steel pair (/3 = -0.000874) 
the lowest value of F is obtained (~ -8). This implies 
that thermal failure is more likely to occur, due to 
the drastic reduction in the capacity of heat removal 
expected at higher temperatures. This effect is best il- 
lustrated in figure 6, which depicts the variation in the 
matching function with temperature. Notice the drop 
in the matching function (which implies a corresponding 
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Figure 6. Variation in the matching function ~ with tempera- 
ture for several materials sliding against mild steel (AISI 1020). 
Load = 20 N, Uslid : 2 m's -1 .  
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drop in the capacity for heat removal) displayed by 
class a materials (sapphire and tool steel). The capacity 
of heat removal is closely related to the fl coefficient 
and the F values given in table I (compare the ~ values 
to the corresponding curves). Moreover, notice that  a 
system composed of a class b material rubbing against a 
class a material (such as mild steel and stainless steel) is 
thermally stable in the sense that  the matching function 
is almost uniform, which implies that  the capacity of 
heat removal remains almost constant with temperature 
elevation (compare the curves for Inconel and stainless 
steel to the curves for mild steel and sapphire). 

6.3. Effect of the matching function on heat removal 
To illustrate the influence of the matching function on 

the heat removed away from the surface, two materials 
were chosen: mild steel (AISI  1020) and stainless steel 
(AISI  304 HN). The characteristics of heat dissipation 
of each material are plotted in figure 7. Both materials 
were assumed to slide at 2 m.s -~ under a nominal load 
of 20 N under plastic contact conditions. The figure 
depicts the variation in the quantity of heat dissipated 
versus the ratio (9/69 . . . .  The quanti ty of heat dissipated 
was evaluated under the convenient assumption that  all 
the heat generated at the interface is dissipated through 
a single asperity (not partitioned between the asperity 
pair). The radius of the asperity was calculated following 
the method of Lim and Ashby [10], and was found 
to be approximately 12 ~tm. Temperature gradients 
were evaluated at consecutive time increments, and 
then related to the instantaneous temperatures (and 
thereby to the ratio O/(gm~×). Two solutions are plotted 

4e-005 

3e-005 

2e-005 

1c-005 

~ <ond solution 

t~r cond ~olution/̀ If - ~ ~  

S~linlt.~ steel ( AIS1304HN} 
const, condsolutton 

vat c d s rio 

0 2 0.3 04 05 06 0.7 0.8 09  

temperature rise O/Oma x 

Figure 7. Variation in the rate of heat dissipation for mild 
steel (AISI 1020), and stainless steel (AISI 304 HAl), with 
the non-dimensional temperature ~ /~m~×.  The rate of heat 
conduction is calculated by means of constant and variable 
conductivity solutions utilising the room and the temperature 
dependent thermal conductivities respectively. 
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in figure 7". the constant conductivity solution, which 
represents the amount of heat dissipated, calculated 
by evaluating the-product  of the temperature gradient 
and the room temperature thermal conductivity; and 
the variable conductivity solution, which represents the 
amount of heat dissipated, evaluated by means of a 
temperature-dependent conductivity. 

It will be noticed that, individually, each material 
behaves as expected for its material class: the heat 
transfer rate predicted by the constant conductivity 
solution for mild steel (class a material, negative 
coefficient) drops with temperature due to the effect 
of the negative matching function. Notice that  the 
heat transfer rate drops further if the effects of the 
temperatnro cm thp t:horm~l conductivity are accounted 
for. The opposite is noted for stainless steel (class b 
material, pu~luvv p cuvmcient). Therefore, it seems 
logical to expect that  if mild steel were matched against 
stainless steel, the drop in the dissipation ability of mild 
steel would be compensated by the increase in the heat 
removal capacity of stainless steel. 

Figure 8 depicts the variation in the rate of heat 
dissipation for two rubbing pairs. The first is a mild 
steel pair; the second is a mild steel stainless steel pair. 
Conditions of sliding are the same as those of figure 7. 
The amount of heat shown in the figure is scaled with 
respect to the maximum heat removed by the mild 
steel pair. Note that  for the same applied thermal load, 
the mild steel pair dissipates more heat than the mild 
steel stainless steel pair. This is due to the value of 
the conductivity of mild steel, which is higher than 
that  of stainless steel. The drop in the amount of heat 
conducted with time is due to the negative value of the 
effective matching function Feg for each of the rubbing 
pairs (see table II1). Note that  as the room tempera- 
ture conductivity of mild steel is almost three times that  
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Figure 8. Comparison of the variation in the amount of heat 
removed by a mild steel asperity pair to that removed by a 
mild steel-stainless steel asperity pair with the non-dimensional 
contact time t/tc.  
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TABLE III 
Values of the effective matching function /'eft for several materials sliding 

against mild steel (AISI 1020). Load = 20 N, U~lia = 2 m.s -1 .  

Material c~ X 10 .5  /3 ko F~ff 
(m2.s -1) (U -1) (W.m-l .U -1 ) ( W . m - l . s  -1) 

Sapphire~t 
Tool steel ( A I S I  52100) ~ 
Stainless steel ( A I S I  30~ HN) b 
Zinc ~ 
Inconel b 
Mild steel ( A I S I  1020) ~ 
Titanium ~ 

1.326 
0.956 
0.395 
0.44 
0.31 
0.79 
0.932 

-0.00081 
-0.0004 

0.000874 
-0.000229 

0.002 
-0.000486 
-0.00017 

28.2 
35.4 
13.8 

121.0 
9.133 

51.823 
21.9 

-13.9348 
-12.234 
-1.77 
-20.86 

2.6052 
-15.4308 
-7.658 

superscript letters indicate material class. 

of stainless steel (51.8 W . m - I . K  -1 for the former and 
13.38 W.m -1.K -~ for the later),  mild steel will dominate  
the heat  transfer  process. This is so because the mater ia l  
with the higher conduct ivi ty  carries a bigger por t ion of 
the dissipated heat. Consequently, the  decrease in the 
conduct ivi ty  of the mild steel will overtake the increase 
in the  conduct ivi ty of stainless steel. This effect is be t te r  
i l lustrated in figure 9 which depicts  the variat ion in the 
heat  conducted away from the surface of contact  with 
the rat io O / O  . . . .  Notice tha t  the rate  of decrease in 
the heat  dissipation is almost identical for both  curves. 
Again, this is due to the dominant  influence of the mild 
steel asperity. 

6.4. Effect of the matching function 
on the specific contact efficiency 

0,3 

0 

i 

0.25 

02 

0 1 5  

0.I 

005 

0 

o .~=~l I 

~OCCO~ODOCCC~O~CCCZC~D~CDDO 

20 40 60 80 I00 

time ofconlact  ~sccs 

120 

Figure 10. Variation in the specific contact efficiency r]a of  
the asperity pairs of figure 8 with actual time of contact.  

Figure 10 is a plot of the specific dissipation 
efficiency, r]~, against  the t ime of contact  for the two 
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Figure 9. Comparison of the variation in the amount of heat 
removed by a mild steel asperity pair to that removed by a mild 
steel-stainless steel asperity pair with the non-dimensional 
temperature rise O/O . . . .  

asperi ty  pairs of figures 8 and 9. The nominal  load and 
sliding speed are the  same as those of the previous 
figures. Notice that ,  despite the increase in the amount  
of heat  removed by the mild steel-stainless steel asperi ty  
pair, relative to tha t  removed by the mild steel pair,  
the specific efficiency of the former is considerably 
smaller than the later. An interesting feature of the 
figure, however, is the change in Va with respect to 
time, which is slower for the mild steel-stainless steel 
pair  than tha t  of the mild steel pair. This is due 
to the increase in the conduct ivi ty of stainless steel 
with temperature .  Essentially the same effects can be 
observed in figure 11 which traces the variat ion in r]a, 
with respect to t empera tu re  for the same asperi ty pairs. 

The choice of the rubbing mater ia ls  so as to achieve a 
positive matching function is always possible for class b 
rubbing pairs. The reason is tha t  the F values for 
each mater ia l  are inherently positive. The value of this 
parameter is, however, negative for class a materials 
due to the negative value of the/3 coefficient. This poses 
a challenging problem when either a class a material is 
to rub against a class b material, or when two class a 
materials rub against each other. 
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Figure 1 1. Variation in the specific contact efficiency v i a  of the 
asperity pairs of figure 8 with the instantaneous temperature 
rise at the centre of the contact spot. 

In the first case, the situation is complicated if 
the conductivity at room temperature of the class a 
material is considerably higher than that of the 
class b material, with the former dominating the heat 
conduction process because it bears the biggest portion 
of the thermal load. Consequently, regardless of the 
improvement in heat removal conditions offered by the 
increasing conductivity of the class b material, the 
specific efficiency rla of the asperity pair will drop. This 
applies to the example considered in this work, as the 
room temperature conductivity of mild steel is more 
than three times that of stainless steel (see table I1). 

In the case of class a rubbing pairs, the matching 
function is inherently negative due to the negative 
coefficients. This case clearly poses a strong potential 
for accelerated thermal-induced failure as the drop in the 
conductivity may induce an accumulation of frictional 
heat in the contact and the sub-contact layers. In 
essence, the control of the heat dissipation away from 
the surface, so as to minimise thermal damage, has to be 
attempted through the control of the parameter / ' ,  i.e. 
by increasing the positive slope of the heat penetration 
coefficient with temperature. 

6.5. Effect of a thin layer 
on the matching function 

Recalling equation (18a and b), we may conceive that 
the control of the parameter F may be achieved through 
either magnifying the product /3 k0 or minimising the 
effect of the diffusivity. The objective in the first option 
is to stabilise the variation in the conductivity with 
temperature. That is, minimisation of a negative 
coefficient or maximisation of a positive /3 coefficient. 
The objective in the second option is to obtain a lower 
effective diffusivity. The difficulty here is the coupling 

between the conductivity and the diffusivity of the 
same material: in general, high thermal conductors 
possess also high thermal diffusivity [11]. Perhaps an 
effective solution is the application of a thin coating 
to the thermally dominant material [12]. In this way, 
the individual T' values would now represent a resultant 
value, combining that of the material and the coating. 
If the coating slightly reduces the thermal conductivity 
of the dominating material, but compensates for 
the negative /3 coefficient, then equal thermal load 
sharing would be realised. Consequently, the chance 
of neutralising the destructive effect of the latter is 
greatly enhanced. 

To examine the above hypothesis, a set of calculations 
was performed for the same rubbing pairs introduced 
above, but taking into account the presence of a 
10 tim thin layer of Inconel on one of the mild 
steel asperities. Table I V  summarises the changes in 
the matching function due to the presence of the 
Inconel layer. Note that the application of the layer 
causes the effective room temperature conductivity to 
decrease: from 51.8 W-m-I .K -1 for mild steel to around 
26 W.m-I .K -1 for the layer and the substrate. This 
is accompanied by a positive change in the effective 

coefficient from about -0.000486 for the former, to 
around 0.000759 for the latter. In this manner, a drop in 
the matching function at higher temperature gradients 
is largely avoided. This is apparent in figure 12, which 
compares the behaviour of the matching function for 
both rubbing pairs with and without the deposited 
layer. Notice that the presence of the layer significantly 
enhances heat removal for the mild steel pair, especially 
at higher temperatures. 

The improvement in heat removal, however, may be 
achieved at the expense of the room temperature con- 
ductivity. This was seen in the present case, where the 
room temperature conductivity dropped by almost an 
order of magnitude. This may lead to an initial drop 
in the amount of heat transferred in the beginning 
of the contact cycle, as compared to the case where 
no layer is deposited. However, with time progression 
the temperature rise will increase, and the matching 
function will be dominant, with the effect that the ef- 
ficiency of heat removal will be enhanced due to the 
positive/3 coefficient. The result will be that the total 

TABLE IV 

Comparison of the values of the effective 
matching function }"eft for a mild steel, 

and a mild steel-stainless steel rubbing pair, 
with and without a 10 pm thin layer applied 

to the mild steel asperity. 

Fefr (W'm-2.K -1) with 10 ~tm 
Inconel layer 

Mild steel-mild steel -2.933 
Mild steel-stainless steel 5.5185 

without 
layer 

- 15.4308 
--1.77 
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Figure 12. Effect of applying a thin coating on the behaviour 
of the matching function Feff for the asperity pairs of 
figure 8, with temperature. Two cases are compared: both 
metals rubbing without the layer, and the effect of a 10 mm 
thick Inconel layer applied to mild steel. Load = 20 N, and 
Uslid = 2 m.s -1. 

amount of heat conducted throughout the contact cycle 
would be higher in the presence of a layer than the 
amount for mild steel by itself. This may be verified by 
comparing the values (in figure 12) of the matching 
function for mild steel with and without a layer, 
especially at higher temperature rises (above 200 °C). 

7. SUMMARY AND CONCLUSIONS 

The change in the thermal properties of rubbing 
materials with temperature influences frictional heat 
removal. The temperature rise induces variation in the 
so-called 'coefficient of heat penetration'. This variation 
was termed the matching function of a material. The 
sign of the effective matching function, that of the 
rubbing pair, was identified as an indicator of the nature 
of heat removal in a contact cycle. 

The sign of the matching function follows closely 
the sign of the temperature coefficient of thermal 
conductivity /3 of the material. For class a materials 
(negative j3 coefficient), the matching function assumes 
a negative sign. This implies a drop in the rate of 
heat removal with temperature increase. By contrast, 
the matching function in case of class b rubbing pairs 
assumes a positive sign. This implies an increase in 
the rate of heat removal with temperature increase. An 
interesting case arises when a class a material slides 
against a class b material. In such an event, the material 
with both a higher room temperature conductivity and 
a higher product/~ ko will dominate heat removal. 

A criterion for the thermal compatibility of rubbing 
materials is also proposed. This criterion requires the 
choice of materials for rubbing applications to be made 

so as to maintain, in order of preference, a positive, zero, 
or slightly negative matching function. Subsequently 
this criterion was used as a guide to enhance the heat 
transfer between a rubbing steel pair by applying a 
tribological thin coating to the dominant material. 

It is recognised that other parameters such as 
strength, toughness, hardness, and tribological com- 
patibility, play a key role in the selection of suitable 
materials for rubbing applications. While thermal com- 
patibility may not dominate, it is envisaged that a 
comprehensive thermal compatibility map will provide 
some additional criteria for reducing the bewildering 
range of available materials. 
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APPENDIX  A 

Finite d i f fe rence  der iva t ion  
of  the mode l  equat ion  

The total amount of heat flowing away from the 
contact spot into a solid is given by [13] as: 

Q I i  2 [fA k OT (-~,t)dA]dt (A-l) 
tl --t2 

where ~ / ~  denotes differentiation along the outwards- 
drawn normal unit vector to the boundary surface 
element dA, and 7 is the position vector. For 1-D 
heat flow and a nominally flat contact spot in the X Y 
plane, equation (1) may be written as: 

Q k ~-~ (z,t) dA ~=0 dt (A-2) 
tl --t2 

Computing the inner integral, equation (2) takes the 
form: 

I i  ~T ~=o Q k ~-~ (z,t) A¢ dt (A-a) 
tl --t2 

To trace the rate of heat flow through the contact at 
infinitesimal time increments, we express equation (3) 
in a finite difference form as in [14]: 

fro+At { } Z=0 AQ = -A~ k T(Zo + AZ,t) -- T(Zo,t) 
t~t+At ~to -- A Z  dt 

(A-4) 
Invoking the mean value theorem, equation (4) may 

be integrated as: 

A Q _  A k { T ( Z o + A Z , t o + A t ) - T ( Z o , t o + A t ) }  
At A Z  z=o 

(A-5) 

Summing the heat penetrating through the surface 
Z = 0 into each of the rubbing solids we may write: 

[ {O(z~Z,ti)-O(O,ti)} 
(1i = - A c  kl ~X-Z 1 

+ k2{ O(AZ,ti) - O(O,t~) ~ ] 
~z J2J 

(A-6) 
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where O denotes the temperature rise above the 
initial temperature T(Z,to). Finally upon expressing 
the thermal conductivity of each solid in the linear form 
k(O) = k0(1 + /30) ,  we may express the rate of heat 
penetrating the contact spot towards the bulk of the 
asperities as: 

qi = -Ac [kol I1 +/31 0(0,ti)] { O(AZ,ti) 
7~ g- }1 

O(O&) 

+ k% [1 +/32 0(0,ti)] ~" O ( A Z , t ~ -  O(O&) (A-7) t zxz J2J 

Equation (A-7) is identical to equation (3) in 
the main text except that the dependence of the 
temperature rise on time was omitted for convenience. 

Note that the temperature gradient underneath the 
asperity is, in essence, non-linear. This may be remedied 
in the current formulation by the proper choice of the 
diffusion length AZ [10]. For this reason we choose the 
diffusion length so as to yield the actual value of the 
gradient at the point of interest along the axis of the 
asperity. 

Accuracy range for the model equation (3) 

The idea implied in the derivation of equation (3) in 
the main text is to express the temperature gradients 
in both rubbing members in terms of instantaneous 
quantities. That is, to trace the evolution of the 
temperature gradients on both sides of the contact 
spot (and thereby the quantity of heat dissipated 
towards the bulk of the material) at infinitesimal 
time increments ti within the contact cycle. This is 
achieved by calculating an instantaneous temperature 
difference [O~ - Ob] (ti) and a maximum instantaneous 
penetration depth Zpm~x(ti ). Through the substitution 
of these instantaneous quantities in a finite-difference 
formulation of the Fourier equation, the heat dissipated 
away from the contact spot is expressed as a rate (heat 
flow per unit time). This allows for freezing the time 
parameter, or in optical terms, allows for the frame-by- 
frame study of the gradients and the quantity of heat 
transferred. Such an idea is frequently invoked in the 
optical measurements of the instantaneous displacement 
fields [15]. Naturally, one may question the domain of 
validity of such an approach. Indeed, this approach is 
valid only for very small times (order of 10-100 gs), 
a time domain which includes the duration of contact 
between the micro roughness for practical nominal loads 
and sliding speeds [16}. 

To enhance the accuracy of the calculations, two 
points have to be addressed. Firstly, what is the relation 
between the time step (ti) and the depth of penetration 
AZ (or Zpm,x), and, secondly, what is the criterion by 
which this penetration depth will be judged small so as 
to allow for the negligence of the storage term: 

, F p C (z,t) dt (A-8) 
~ dt 0 
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The first question may be answered by appealing 
to the well-known Von Neumann-Courant  stability 
criterion. For the finite-difference formulation of the 
1-D equation the critical size of the co-ordinate step AZ 
is related to the time step by: 

AZ  _< 2v /~ t  (A-9) 

where a is the thermal diffusivity of the material. 
Satisfying equation (A-9) ensures that  the errors in the 
temperatures are minimal. 

To address the second question (which is more 
critical to the model equation), we first note that  the 
semi-infinite body solution was used to evaluate the 
maximum penetration depth, that  is, the depth of the 
so-called thermal layer Zpmax. In this formulation, the 
time-dependent quantity of heat conducted away from 
the surface is written as in [13]: 

0T Z t (To - T~) (A-10) q ( t ) - k ~ ( , )  z = 0 = C k  x / ~  

where C is a constant almost equal to n- l /2 ,  and de- 
pending on whether the type of solution is approximate 
or exact, and Ti is the initial temperature at the sur- 
face Z = 0. The maximum penetration depth that  may 
be used to calculate the quantity of heat without the 
storage term is equal to 2 {a t} ~/2. 

Now, if one assumes first that  the asperity was 
initially at a uniform temperature Ti, and one adopts 
the definition of the 'thickness of the thermal layer' 
as the thickness beyond which, for practical purposes, 
there is no heat flow (and consequently no temperature 
rise above the initial temperature),  then one may write: 

q(t) = E - k 3  OT Z t 
V 2  ( ' ~) z :0  

J 
j--2 :E__~j{[Zo-r(z~>Zpmax)]} ti 

2 x / ~  t (A-11) 
j = l  

This equation is identical to equation (3), which 
starts the analysis, except that  the latter was derived 
from a finite-difference-based formulation. 

APPENDIX B 

Combining the thermal properties 
of the layer and the substrate 

To determine the value of matching function when a 
thin coating is applied to one of the contacting surfaces, 
the equivalent thermal properties and their respective 
variation with temperature have to be evaluated. In this 
appendix we derive the expressions used to compute 
such equivalent quantities. 

B.I. Calculation of the equivalent 
diffusivity ~q 

The thickness of the applied coating (layer), 61, which 
is known a priori, represents the distance that  must be 
travelled by a temperature pulse originating at the 
asperity tip to reach the substrate material. Upon 
penetrating the thickness of the layer, the strength of 
the original pulse has decayed to some new value. So the 
problem reduces to the computation of two quantities: 
the first is the strength of the temperature pulse after 
it penetrates the layer (i.e. at the interface between the 
layer and the substrate). Once this quantity is found, 
we proceed to calculate the penetration depth of the 
new pulse into the substrate. That  is, to calculate Zp .... 
for the substrate material under the influence of the 
reduced temperature pulse. This would be represented 
by tile distance which is covered until this new pulse 
Os, decays to the 1% criterion developed in section 4. 

Applying equation (11) we may write: 

& 
~ = 2 ~ (B-l)  

Substituting equation (B-l) in equation (10), the 
strength of the pulse at the interface between the 
substrate and the layer is then given by: 

OL/S = erfc(~l) (B-2) 
m 

recalling the definition of the parameter O, we may 
write the actual strength of the temperature pulse at 
the interface as: 

D 

OL/S(t) = OL/S O0(t) (B-3) 

Using the results of equation (B-3) we may calculate 
the penetration depth into the substrate due to a pulse 
of strength OL/S(t) operating at the interface. Thus we 
obtain from equation (13): 

6s = Zo.OlOL/S = 2 ~ s ~  (B-4) 

where 

erfe(~) = O~ 

Now, the total penetration depth into the layer- 
substrate has to equal the penetration depth that  would 
have been calculated based on an equivalent diffusivity 
OZeq: 

6tot : 6| -[- 6S : Z0.01eq (B-5) 

Equation (B-6) may be written as: 

6tot : 4 ~ / ~ e q  ti (B-6) 

from which the equivalent diffusivity aoq is evaluated. 
By repeating the same procedure using the value 
of the diffusivities of the layer material and of 
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the substrate material at different temperatures, a 
corresponding array containing the variation of the 
substrate penetration depths with temperature, 6,(O), 
is obtained. This may be then used to calculate the 
equivalent thermal conductivity of the layer substrate 
combination. 

B.2. Calculation of  the equivalent 
conductivity ken 

Assuming perfect contact between the layer and the 
substrate, the equivalent conductivity may be calculated 
as in [3]: 

6] +6~ 
keq -- 51/kl -F ~s/ks (S-7) 

Substituting the value of 6s(O), the equivalent 
conductivity as a function of temperature is written 
as: 

k~q(O) - 61 & 
kl(O) q- ~ss (O) (B-S) 

Equation (B-8) yields the value of the equivalent 
conductivity at discrete temperatures. This in turn may 
be modelled in the linear form: 

keq(O) ---- k0eq [1 if- feq O] (S-9) 

Equation (B-9) was used to calculate the equivalent 
temperature coefficient of conductivity feq, and to pre- 
dict the variation of the equivalent thermal conductivity 
for the layer-substrate combination. The results are de- 
picted in figure B-I, where the conductivity of mild 
steel (AISI 1020) and Ineonel (X-70) are plotted along 
with the equivalent conductivity for a 10 mm thick 
layer of Inconel applied to mild steel both at discrete 
temperatures and as modelled by equation (B-9). 
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Figure 13. Variation of the effective thermal conductivity of 
the combination of the Inconel layer and the substrate with 
temperature. 
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APPENDIX C 

C.1. Effect of  the variation in the thermal 
conductivity on the penetration 
depth Zpmax 

Equation (10) is the solution of a linear constant 
conductivity problem. To obtain the solution of the same 
problem when the conductivity varies with temperature, 
we invoke the so-called Kirchoff transformation [13] 
which is applied as follows. 

Assume that the thermal conductivity varies linearly 
with temperature, i.e.: 

k(T) = k0(1 + fiT) (C-l) 

Define a new variable, U, such that: 

e f t  ~ U = ~o k(T) aT (o2) 

Substituting this new variable in the heat equation, 
we obtain an equation that is identical to the original 
heat equation, except that the solution now will yield 
the solution in terms of the transformed variable U 
(equivalent to O in equation (10) of the main text). 

To obtain the variable conductivity solution, we 
apply to equation (10) the inverse transformation: 

and we obtain: 

1 i }  (C-4) T---- ~ { v / l + 2 f O  - 

where O is the solution of the linear constant conduc- 
tivity problem and T is the solution of the variable 
conductivity problem. 

Now since 0<  O < 1, it follows that the maximum 
error in the estimate of the penetration depth introduced 
by neglecting the variation in the conductivity with 
respect to temperature is encountered when O - - 1 .  
Hence the maximum error, ~m~, may be defined as 
the ratio of the actual to the constant conductivity 
temperatures when O = 1, i.e.: 

_ T _ 1 i} 
~Omax ~ f { V/'i- -}- 2 f - (o5) 

substituting the value of f for the materials used (from 
table IIl) in equation (C-5), the maximum error is 
readily obtained. 

Table Vgives the value of the maximum error for the 
materials used in the current investigation calculated 
by means of equation (C-5). It will be noticed that 
this error is quite insignificant. This is not surprising, 
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as the penetration depth is an explicit function of the 
diffusivity (and not the conductivity). 

C.2. Ef fect  o f  t h e  v a r i a t i o n  in t h e  t h e r m a l  
e f f u s i v i t y  w i t h  t e m p e r a t u r e  

There are two quantities that  contribute to the value 
of the effusivity: the thermal conductivity, and the 
thermal capacity (product of the density and the spe- 
cific heat). For metals, the specific heat increases with 
temperature elevation, whereas the density decreases 
slightly (by a factor of 5.10 -5 °C-1 [17]) with tem- 
perature. The change in the conductivity, however, is 
two to three times the corresponding change in the 
diffusivity. For example, the change in the diffusivity of 
Duralumin at 600 °C is approximately - 4  % of that  at 
room temperature, while the corresponding change in 

conductivity is approximately 13 % of that  at room tem- 
perature. Essentially, the same applies to steels, where 
the change in the diffusivity at 900 °C (for example) 
compared to the room temperature value is almost one 
third of the corresponding change in conductivity [22]. 
So the change in the thermal capacity tends to some- 
what offset the effect of the variation in the conductivity 
with temperature. As such, the dominant thermal in- 
fluence at the interface, surface Z - - 0 ,  is the thermal 
conductivity, as explicated in the work of Storm [17] and 
Ling and Rice [18], Abdel-Aal [8, 19] and Abdel-Aal and 
Smith [9]. Table VI summarises the value of the effusiv- 
ity for the materials used in the current investigation 
at both room temperature and at 1 200 °K. It will be 
noticed that  the variation in the effusivity at this high 
temperature is still fairly moderate, so that  at practical 
temperatures typical of sliding systems, this variation 
may be considered insignificant. 

TABLE V 
Maximum error introduced by neglecting the variation in the conductivity 

in the calculation of the penetration depth of a temperature pulse. 

Material j3 (°C) ~9 

Sapphire 
Tool steel ( AISIn 52100) 
Stainless steel ( AISI 30~{ HN) 
Zinc 
Inconel 
Mild steel (AISI 1020) 
Titanium 

--0.00081 
-0.0004 

0.000874 
-0.00023 

0.002 
--0.00049 
--0.00017 

1.00041 
1.0002 
0.9995 
1.000115 
0.999 
1.0002 
1.000085 

--0.0041 
--0.0002 

0.000437 
-0.00011 

0.0001 
-0.00024 
--8.5.10 -5 

TABLE VI 
The effusivity of the materials used in the current work 

at room temperature and at 1 000 °K. 

Material /2 (293 °K) 

Sapphire 
Tool Steel (AISI 52100) 
Stainless Steel ( AISI 304 HAl) 
Zinc 
Inconel 
Mild steel (AISI 1020) 
Titanium 

9 223 
13 507.92 
7 493.175 
18 237.79 
6 761.144 
13 835.22 
7 172.385 

t w ---- ~ (1 200 o K)/t9 (293 °K). 

(1 200 °K) ~t 
8 301.2445 
14 121.74 
10 748.02 
17 540.72 
11 270.67 
13 980.7 
7 728.676 

0.9 
1.045 
1.434 
0.962 
1.66 
1.01 
1.078 

[] 
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